首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新法制备铁氰化钴修饰玻碳电极及多巴胺的电催化氧化   总被引:4,自引:0,他引:4  
新法制备铁氰化钴修饰玻碳电极及多巴胺的电催化氧化  相似文献   

2.
《Analytical letters》2012,45(8):1610-1621
Abstract

Cobalt hexacyanoferrate (CoHCF) film was formed on multiwalled carbon nanotubes (MWNTs) modified gold electrode by electrodeposition from 0.5 M KCl solution containing CoCl2 and K3Fe(CN)6. The electrochemical behavior and the electrocatalytic property of the modified electrode were investigated. Compared with CoHCF/gold electrode, the CoHCF/MWNTs/gold electrode exhibits greatly improved stability and enhanced electrocatalytic activity toward the oxidation of thiosulfate. A linear range from 5.0×10?5 to 6.5×10?3 M (r=0.9990) for thiosulfate detection at the CoHCF/MWNTs/gold electrode was obtained, with a detection limit of 2.0×10?5 M (S/N=3).  相似文献   

3.
Kumar SA  Tang CF  Chen SM 《Talanta》2008,74(4):860-866
Here, we described a new method for electrochemically selective detection of dopamine (DA). In this report, for the first time, electrochemical polymerization of 4-amino-1-1'-azobenzene-3,4'-disulfonic acid (acid yellow 9 dye (AY)) was carried out onto the surface of glassy carbon (GC) electrode and indium tin oxide coated electrode (ITO) from acidic solution containing AY monomers. A polymerized film of acid yellow on the surface of a glassy carbon electrode was characterized by cyclic voltammetry (CV). The redox response of the poly(AY) film on the GC electrode showed a couple of redox peak in 0.1M sulfuric acid solution and the pH dependent peak potential was -58mV/pH which was close to the Nernst behavior. The poly(AY) film-coated GC electrode (GC/PAY) exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA) in 0.1M phosphate buffer solution (PBS, pH 7.0) and increased the anodic peak current three time higher than bare GC electrode. GC/PAY did not reduce the considerable overpotential for oxidation of DA when compare to bare GC electrode. However, in contrast to other polymer modified electrode, due to the strong negatively charged back bone of poly(AY) highly repelled the important interference of DA, such as ascorbic acid (AA), uric acid (UA) and reduced form of nicotinamide adenine dinucleotide (NADH) in 0.1M PBS (pH 7.0) and did not showed any response for oxidation of these interferences. This behavior makes the GC/PAY for selective detection of DA in the presence of higher concentrations AA, UA and NADH. Using differential pulse voltammetry the calibration curves for DA were obtained over the range of 1-100muM with good selectivity and sensitivity. The proposed method provides a simple method for selective detection of DA from its interferences.  相似文献   

4.
电催化是化学修饰电极研究的中心课题之一,血红素是一种重要的铁卟啉化合物,其中的铁原子能够以两种价态存在.我们采用循环伏安法将血红素修饰于电极表面,得到了氧化还原体(redox)型化学修饰电极,并用于儿茶酚类化合物和抗坏血酸的电催化氧化研究.采用伏安法...  相似文献   

5.
Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.  相似文献   

6.
IntroductionDAisoneofessentialparticipantsintheneuro transmissionprocessinmammaliancentralnervoussys tem .AlossofDA containingneuronsmayresultinsomeseriousdiseasesuchasParkinsonism .1Sinceitsdiscov eryinthe 195 0s ,DAhasbeenofinteresttoneuroscien tistsandchem…  相似文献   

7.
A new approach was attempted to prepare a chemically modified electrode using Cobalt hexacyanoferrate (CoHCF) as the redox mediator and to study its stability and electrocatalytic activity for ascorbic acid (AA) oxidation. The basic principle underlying the electrode modification is the coordination of cobalt ion with the amino nitrogen of aniline adsorbed on the surface of a graphite rod. This surface was subsequently derivatized with ferrocyanide to get CoHCF film on the electrode surface. The CoHCF modified electrode as prepared above was characterized using cyclic voltammetry. The effect of scan rate, supporting electrolyte and pH of the medium on the performance of the modified electrode was investigated. The CoHCF modified electrode exhibited good electrocatalytic activity towards the oxidation of ascorbic acid and gave a linear response from 5.52 x 10(-5) M to 3.23 x 10(-2) M with a correlation coefficient of 0.9929. The detection limit was found to be 3.33 x 10(-5) M. Hydrodynamic voltammetry and chronoamperometry studies for the oxidation of ascorbic acid were also carried out. The electrode was highly stable and exhibited good reproducibility. This modified electrode was also applied for the determination of ascorbic acid in commercial samples.  相似文献   

8.
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.  相似文献   

9.
A stable electro active thin film of cobalt hexacyanoferrate (CoHCF) was deposited on the surface of an amine adsorbed graphite wax composite electrode using a simple method. Cyclic voltammetric experiments showed two pairs of well defined peaks for this CoHCF modified electrode which exhibited excellent electrocatalytic property for the oxidation of paracetomol at a reduced overpotential of 100 mV and over a concentration range of 3.33 × 10−6 to 1.0 × 10−3 M with a slope of 0.208 μA/μM with good sensitivity. The influence of the supporting electrolyte on peak current and peak potential were also obtained in addition with effects of common interference (e.g., ascorbic acid) on the response of the modified electrode. Various parameters that influence the electrochemical behavior of the modified electrode were optimized by varying scan rates and pH. Electrochemical impedance spectroscopy studies suggested that the electrode reaction of the CoHCF film is mainly controlled by transport of counter ion. The immobilized CoHCF maintained its redox activity showing a surface controlled electrode reaction with the electron transfer rate constant (Ks) of 0.94 s−1 and charge transfer coefficient of 0.42. Hydrodynamic and chronoamperometric studies were done to explore the utility of the modified electrode in dynamic systems. The results of the differential pulse voltammetry (DPV) using the modified electrode was applied for the determination of paracetomol in commercially available tablets. The results obtained reveal that the electrode under study could be used as an effective sensor for online monitoring of paracetomol.  相似文献   

10.
A stable polyaniline (PANI) film doped with anthraquinonedisulfonate (AQDS) on glassy carbon (GC) electrode is obtained in acidic solution. The electrochemical behavior of PANI/AQDS film coincides with the donor–acceptor (DA) intramolecular interaction, while the doped AQDS behaves as a two‐electron two‐proton transfer process during redox reaction. This GC/PANI/AQDS electrode shows high electrocatalytic activity and irreversible electron‐transfer characteristic for O2 two‐electron reduction. Tafel behavior analysis suggests that the oxygen reduction kinetics are different at certain potential regions on this electrode. Possible mechanism of oxygen reduction on the GC/PANI/AQDS electrode points to a similar Schottky diode characteristic.  相似文献   

11.
The electrocatalytic oxidation of hydrazine has been studied on glassy carbon, Pt and Au electrodes modified by cobalt hexacyanoferrate (CoHCF) using cyclic voltammetry and rotating disc techniques. It has been shown that the oxidation of hydrazine to nitrogen occurs at the potential coinciding with that of Co(II) to Co(III) transformation in a CoHCF film, where no oxidation signal is observed at a bare glassy carbon electrode. A Tafel plot, derived from RDE voltammograms, exhibits a slope of 150 mV, indicating a one-electron charge transfer process to be the rate-limiting step. The electrocatalytic efficiency of the modified electrode towards hydrazine oxidation depends on solution pH, and the optimum range was found to be located between pH 5 and pH 7. The kinetic behaviour and location of the electrocatalytic process were examined using the W.J. Albery diagnosis table, and it was concluded that the reaction has either a “surface” or a “layer” reaction mechanism. Pt- and Au-CoHCF-modified electrodes show no significant electrocatalytic activity towards hydrazine oxidation. Received: 25 April 1997 / Accepted: 12 August 1997  相似文献   

12.
A cobalt hexacyanoferrate (CoHCF) nanoparticle (size ca. 60 nm) chemically modified electrode (CME) was fabricated and the electrochemical behavior of thiols at this nanosized CoHCF CME was studied. In comparison with a bare glassy carbon (GC) electrode and with a general CoHCF CME which was electrodeposited in the traditional manner, the present nanosized CoHCF CME efficiently performed electrocatalytic oxidation for glutathione (GSH) and L-Cysteine (L-Cys) with relatively high sensitivity, outstanding stability, and long-life. Combined with high-performance liquid chromatography (HPLC), the nanosized CoHCF CME was used for electrochemical determination (ECD) of GSH and L-Cys. The peak currents were a linear function of concentrations in the range 2.0×10–7 to 2.0×10–4 mol L–1 for both GSH and L-Cys, with detection limits of 1.2×10–7 and 1.0×10–7 mol L–1, respectively. Coupled with microdialysis sampling, the HPLC–ECD system has been successfully used to assess the GSH and L-Cys content of rat striatum.  相似文献   

13.
采用循环伏安法研究了多巴胺(DA)在聚对硝基苯偶氮间苯二酚(p-nitrobenzenazo resorcinol,简称NBAR)膜修饰电极上的电化学行为,用差示脉冲伏安法对多巴胺的含量进行测定.结果表明,聚NBAR膜修饰电极对DA有明显的电催化作用.在pH4.0的磷酸盐缓冲液中,氧化峰电流与DA浓度在5.0×10-6~8.0×10-4mol/L范围内呈良好的线性关系,检测限为6.0×10-7mol/L.修饰电极可有效消除针剂中其它组分对DA测定的干扰,已用于实际样品DA含量的测定,结果令人满意.  相似文献   

14.
This work describes the modification of a glassy carbon electrode with poly(Toluidine Blue O) (GC/poly-TBO) and single-walled carbon nanotubes (SWCNT) for the electrocatalytic oxidation of nitrite. GC/poly-TBO was prepared by electropolymerization and used as such or after immobilizing SWCNT on the polymeric film to give a composite GC/poly-TBO-SWCNT electrode. The electrochemical and catalytic behavior of both electrodes was studied comparatively. It was observed that the presence of SWCNT contributed to enhance the electrocatalytic response for nitrite oxidation, as measured by amperometry at +0.92 V vs. Ag/AgCl/KClsat and pH 7. The response was linear with respect to the nitrite concentration in the 0.001–4 mM range, with a detection limit of 0.37 μM (based on signal to noise ratio of 3) for GC/poly-TBO-SWCNT. The proposed method was also applied to the determination of nitrite in a wastewater sample and compared to the spectrophotometric method.  相似文献   

15.
Electrochemical synthesis of ruthenium oxide (RuOx) onto Nafion-coated glassy carbon (GC) electrode and naked GC electrode were carried out by using cyclic voltammetry. Electrochemical deposition of RuOx onto Nafion-coated electrode was monitored by in situ electrochemical quartz crystal microbalance (EQCM). Surface characterizations were performed by scanning electron microscope (SEM) and atomic force microscope (AFM). SEM and AFM images revealed that ruthenium oxide particles incorporated onto the Nafion polymer film. In addition, a GC electrode modified with ruthenium oxide–Nafion film (RuOx–Nf–GC) was shown excellent electrocatalytic activity towards dopamine (DA) and ascorbic acid (AA). The anodic peak current increases linearly over the concentration range of 50 μM–1.1 mM for DA with the correlation coefficient of 0.999, and the detection limit was found to be (S/N = 3) 5 μM. Owing to the catalytic effect of the modified film towards DA, the modified electrode resolved the overlapped voltammetric responses of AA and DA into two well-defined voltammetric peaks with peak-to-peak separation about 300 mV. Here, RuOx–Nf–GC electrode employed for determination of DA in the presence of AA. This modified electrode showed good stability and antifouling properties.  相似文献   

16.
李云龙  苏招红  陈超  孟越  谢青季 《应用化学》2011,28(9):1046-1051
基于多巴胺(DA)在多壁碳纳米管(MWCNTs)修饰玻璃碳(GC)电极上的电聚合,制得聚多巴胺(PDA)/MWCNTs/GC电极,并对该修饰电极进行了电化学阻抗谱 (EIS)和循环伏安法(CV)表征。 在该修饰电极上,DA呈现良好的电化学行为。在pH=7.4磷酸缓冲溶液中其氧化电流显著高于在裸电极上的响应,且能有效地抑制2.0 mmol/L抗坏血酸(AA)或K4Fe(CN)6的直接电化学响应,表明MWCNTs可增敏信号,且阳离子选择透过性PDA膜可抑制阴离子的电化学干扰。 采用CV实验检测DA,DA氧化的半微分伏安峰高(ipa-sd)与多巴胺浓度在0.08~1.76 μmol/L范围内呈线性关系,在无抗坏血酸和有0.5 mmol/L抗坏血酸共存时的线性回归方程分别为ipa-sd(μA/s1/2)=0.107+0.405c(μmol/L)(r2=0.986)和ipa-sd(μA/s1/2)=0.628+0.649c(μmol/L)(r2=0.992),检测限均为8.0×10-8 mol/L(S/N=3)。 该法用于盐酸多巴胺注射液中多巴胺的快速测定,结果满意。  相似文献   

17.
Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.  相似文献   

18.
聚苯胺薄膜修饰电极对抗坏血酸的电催化氧化   总被引:12,自引:0,他引:12  
本文表明聚苯胺(PAn)薄膜修饰电极对水溶液中的抗坏血酸(AH_2)在较宽的pH范围和较宽的浓度范围内均有良好的电催化氧化作用, 为EC平行催化过程。利用旋转圆盘电极(RDE)进行了催化过程动力学分析, 求出了催化反应动力学参数。在抗坏血酸浓度10~(-2)~10~(-6) mol·L~(-1)范围内, 催化峰电流与AH_2浓度均成良好的线性关系, 且PAn薄膜修饰电极具有很好的稳定性, 有应用分析抗坏血酸的意义。  相似文献   

19.
Herein, we reported the detection of dopamine (DA) based on use of a cathodically pretreated polyaniline (PANI) modified electrode. The PANI electrode presents a remarkable change in their electrocatalytic properties after a simple cathodic pretreatment, which consisted in applying a potential of ?0.7 V for 3 s. While the as‐prepared PANI shows no electrochemical response for DA, the cathodically pretreated PANI presented reversible electrochemical responses with well‐defined anodic and cathodic peaks. The electrochemical behavior of DA at the PANI electrode was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized experimental conditions, the anodic peak currents increased proportionally to the DA concentration, displaying a linear relationship in the concentration range of 0.11 to 1.75×10?4 M with a detection limit of 13.7 μM (3 σ/slope). Recovery studies in pharmaceutical formulations presented values between 98 % and 104 %. The cathodically pretreated PANI electrode was successfully applied for DA detection in real samples of pharmaceutical formulation showing good agreement with spectrometric comparative method. The unexpected easily capability of modulate the electrocatalytic properties of the electropolymerized PANI film using a simple pretreatement was successfully demonstrated. The cathodically pretreatment PANI electrode showed electrochemical responses for DA with excellent selectivity, sensitivity, and high stability.  相似文献   

20.
同时测定多巴胺和肾上腺素的大环镍膜修饰电极   总被引:4,自引:3,他引:4  
研究了大环镍膜修饰电极对多巴胺和肾上腺素的电化学响应特性;结果表明,该修饰电极对多巴胺和肾上腺素的电极反应具有良好的催化活性,多巴胺和肾上腺素在修饰电极上的氧化电位比在裸铂电极上分别负移了230mV和70mV,使二者的阳极峰得到很好的分离,且灵敏度大为提高;将该修饰电极用于多巴胺和肾上腺素的同时检测,获得满意结果,生物体中的主要干扰物质抗坏血酸和NO2^-等均不干扰测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号