共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the development of the finite element method in simulating scalar transport, governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is its ability to provide nodally exact solutions in the one‐dimensional case. Details of the derivation of the upwind scheme on quadratic elements are given. Extension of the one‐dimensional nodally exact scheme to the two‐dimensional model equation involves the use of a streamline upwind operator. As the modified equations show in the four types of element, physically relevant discretization error terms are added to the flow direction and help stabilize the discrete system. The proposed method is referred to as the streamline upwind Petrov–Galerkin finite element model. This model has been validated against test problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme, numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
2.
A new symmetric formulation of the two-dimensional shallow water equations and a streamline upwind Petrov–Galerkin (SUPG) scheme are developed and tested. The symmetric formulation is constructed by means of a transformation of dependent variables derived from the relation for the total energy of the water column. This symmetric form is well suited to the SUPG approach as seen in analogous treatments of gas dynamics problems based on entropy variables. Particulars related to the construction of the upwind test functions and an appropriate discontinuity-capturing operator are included. A formal extension to the viscous, dissipative problem and a stability analysis are also presented. Numerical results for shallow water flow in a channel with (a) a step transition, (b) a curved wall transition and (c) a straight wall transition are compared with experimental and other computational results from the literature. 相似文献
3.
The prediction of the flow field in a novel spiral casing has been accomplished. Hydraulic turbine manufacturers are considering the potential of using a special type of spiral casing because of the easier manufacturing process involved in its fabrication. These special spiral casings are known as plate‐spirals. Numerical simulation of complex three‐dimensional flow through such spiral casings has been accomplished using a finite element method (FEM). An explicit Eulerian velocity correction scheme has been deployed to solve the Reynolds‐average Navier–Stokes equations. The simulation has been performed to describe the flow in high Reynolds number (106) regimes. For spatial discretization, a streamline upwind Petrov–Galerkin (SUPG) technique has been used. The velocity field and the pressure distribution inside the spiral casing reveal meaningful results. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
4.
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
This paper describes an edge‐based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non‐linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect addressing is quantified for semi‐discrete and space–time analyses. Stabilized formulations, including Petrov–Galerkin models and discontinuity‐capturing operators, are also discussed for both types of discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the edge‐based approach are presented at the end of the paper. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
The Petrov–Galerkin method has been developed with the primary goal of damping spurious oscillations near discontinuities in advection dominated flows. For time‐dependent problems, the typical Petrov–Galerkin method is based on the minimization of the dispersion error and the simultaneous selective addition of dissipation. This optimal design helps to dampen the oscillations prevalent near discontinuities in standard Bubnov–Galerkin solutions. However, it is demonstrated that when the Courant number is less than 1, the Petrov–Galerkin method actually amplifies undershoots at the base of discontinuities. This is shown in an heuristic manner, and is demonstrated with numerical experiments with the scalar advection and Richards' equations. A discussion of monotonicity preservation as a design criterion, as opposed to phase or amplitude error minimization, is also presented. The Petrov–Galerkin method is further linked to the high‐resolution, total variation diminishing (TVD) finite volume method in order to obtain a monotonicity preserving Petrov–Galerkin method. 相似文献
7.
M. J. Martinez 《国际流体数值方法杂志》2006,50(3):347-376
The control volume finite element method (CVFEM) was developed to combine the local numerical conservation property of control volume methods with the unstructured grid and generality of finite element methods (FEMs). Most implementations of CVFEM include mass‐lumping and upwinding techniques typical of control volume schemes. In this work we compare, via numerical error analysis, CVFEM and FEM utilizing consistent and lumped mass implementations, and stabilized Petrov–Galerkin streamline upwind schemes in the context of advection–diffusion processes. For this type of problem, we find no apparent advantage to the local numerical conservation aspect of CVFEM as compared to FEM. The stabilized schemes improve accuracy and degree of positivity on coarse grids, and also reduce iteration counts for advection‐dominated problems. Published in 2005 by John Wiley & Sons, Ltd. 相似文献
8.
In this paper, Navier–Stokes fluid flows in curved channels are considered. Upstream of the backward‐facing step, there exists a channel with a 90° bend and a fixed curvature of 2.5. The purpose of conducting this study was to apply a finite element code to study the effect of the distorted upstream velocity profile developing over the bend on laminar expansion flows behind the step. The size of the eddies formed downstream of the step is addressed. The present work employs primitive velocities, which stagger the pressure working variable, to assure satisfaction of the inf–sup stability condition. In quadratic elements, spatial derivatives are approximated within the consistent Petrov–Galerkin finite element framework. Use of this method aids stability in the sense that artificial damping is solely added to the direction parallel to the flow direction. Through analytical testing, in conjunction with two other benchmark tests, the integrity of applying the computer code in quadratic elements is verified. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
9.
线性定常对流占优对流扩散问题的无网格解法 总被引:1,自引:1,他引:0
应用无网格Galerkin 方法求解对流占优对流扩散问题时会出现非物理现象的数值伪振荡,本文将SUPG方法、GLS方法、SGS方法与无网格Galerkin方法相耦合,成功解决了对流扩散方程中对流项占优时的数值伪振荡问题.运用本文构造的方法,采用线性基和具有C2连续的权函数,应用移动最小二乘法可容易地构造高阶导数连续的形函数,从而避免了有限元方法中当采用线性元插值时,因忽略稳定项中二阶导数项而降低计算精度和稳定性的问题.数值实验表明:本文构造的方法具有计算精度高、稳定性好、计算算法实施简单、前后处理方便的优点,这些方法不仅能适用于对流项占优问题,而且也能很好地消除反应项占优时的数值伪振荡问题. 相似文献
10.
J. I. Ramos 《国际流体数值方法杂志》1990,11(6):893-906
Three adaptive finite element methods based on equidistribution, elliptic grid generation and hybrid techniques are used to study a system of reaction–diffusion equations. It is shown that these techniques must employ sub-equidistributing meshes in order to avoid ill-conditioned matrices and ensure the convergence of the Newton method. It is also shown that elliptic grid generation methods require much longer computer times than hybrid and static rezoning procedures. The paper also includes characteristic, Petrov–Galerkin and flux-corrected transport algorithms which are used to study a linear convection–reaction–diffusion equation that has an analytical solution. The flux-corrected transport technique yields monotonic solutions in good agreement with the analytical solution, whereas the Petrov–Galerkin method with quadratic upstream-weighted functions results in very diffused temperature profiles. The characteristic finite element method which uses a Lagrangian–Eulerian formulation overpredicts the flame front location and exhibits overshoots and undershoots near the temperature discontinuity. These overshoots and undershoots are due to the interpolation of the results of the Lagrangian operator onto the fixed Eulerian grid used to solve the reaction–diffusion operator, and indicate that characteristic finite element methods are not able to eliminate numerical diffusion entirely. 相似文献
11.
In this paper, proper orthogonal decomposition (POD) is combined with the Petrov–Galerkin least squares mixed finite element (PLSMFE) method to derive an optimizing reduced PLSMFE formulation for the non‐stationary conduction–convection problems. Error estimates between the optimizing reduced PLSMFE solutions based on POD and classical PLSMFE solutions are presented. The optimizing reduced PLSMFE formulation can circumvent the constraint of Babu?ka–Brezzi condition so that the combination of finite element subspaces can be chosen freely and allow optimal‐order error estimates to be obtained. Numerical simulation examples have shown that the errors between the optimizing reduced PLSMFE solutions and the classical PLSMFE solutions are consistent with theoretical results. Moreover, they have also shown the feasibility and efficiency of the POD method. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
P. M. Steffler 《国际流体数值方法杂志》1989,9(4):385-403
Finite elements using higher-order basis functions in the spirit of the QUICK method for convection-dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior and upwind to the element domain. Applied with linear test functions to the weak statements for convection-dominated problems, a family of Petrov–Galerkin finite elements is developed. Quadratic and cubic versions are demonstrated for the one-dimensional convection–diffusion test problem. Elements of up to seventh degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a streamfunction–vorticity formulation of the Navier–Stokes equations for a driven cavity flow test problem. With some minor reservations, these elements are recommended for further study and application. 相似文献
14.
J. Steppeler 《国际流体数值方法杂志》1990,11(2):209-226
Different finite element schemes are investigated with respect to their application in numerical weather prediction. Different methods of staggering of variables are considered. The tests concern the accuracy of a Rossby wave prediction and the generation of noise in a geostrophic adjustment process. Theoretical results concerning the noise level of different schemes are confirmed by computations with a one-dimensional model. Favourable results were obtained by hybrid schemes, using different Galerkin treatments for different terms of the dynamic equations. 相似文献
15.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
16.
We propose a space–time adaptive procedure for a model parabolic problem based on a theoretically sound anisotropic a posteriori error analysis. A space–time finite element scheme (continuous in space but discontinuous in time) is employed to discretize this problem, thus allowing for non‐matching meshes at different time levels. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
The numerical simulation of complex flows demands efficient algorithms and fast computer platforms. The use of adaptive techniques permits adjusting the discretisation according to the analysis requirements, but creates variable computational loads that are difficult to manage in a parallel/vector program. This paper describes the approach adopted to implement an adaptive finite element incompressible Navier–Stokes solver on the Cray J90 machine. Performance measurements for the simulation of free and forced convection incompressible flows indicate that the techniques employed result in a fast parallel/vector code. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
18.
19.
In this paper, we develop a finite element model for solving the convection–diffusion‐reaction equation in two dimensions with an aim to enhance the scheme stability without compromising consistency. Reducing errors of false diffusion type is achieved by adding an artificial term to get rid of three leading mixed derivative terms in the Petrov–Galerkin formulation. The finite element model of the Petrov–Galerkin type, while maintaining convective stability, is modified to suppress oscillations about the sharp layer by employing the M‐matrix theory. To validate this monotonic model, we consider test problems which are amenable to analytic solutions. Good agreement is obtained with both one‐ and two‐dimensional problems, thus validating the method. Other problems suitable for benchmarking the proposed model are also investigated. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
20.
A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献