首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the CASSCF/CASPT2 approach, along with several DFT methods (PBE0, B3LYP, BP86, OLYP), we have investigated the bonding of CO, NO, and O2 molecules to two model heme systems: an iron(II) porphyrin with and without an axial imidazole ligand. The experimentally available binding energies are best reproduced by the CASPT2 method and with the OLYP functional. The other functionals considered perform much worse, either severely overbinding (BP86) or underbinding (B3LYP, PBE0). Significant discrepancies between the different density functionals are observed, not only for the energetics but sometimes also for structure predictions. This confirms our viewpoint that a balanced treatment of the electronic exchange and correlation is vital to describe the weak metal-ligand bond between heme and CO, NO, or O2. The binding energies DeltaEb were split into two contributions: the so-called spin-pairing energy DeltaE sp and the "inherent" binding energy DeltaEb0, and both contributions were analyzed in terms of method and basis set effects. We have also investigated the spin density distributions resulting from the bonding of the NO molecule (a noninnocent ligand) to heme. Our analysis at the DFT and CASSCF level shows that, while various density functionals predict qualitatively very different spin distributions, the CASSCF spin populations most closely correspond to the results obtained with the pure BP86 or OLYP rather than with the hybrid functionals.  相似文献   

2.
Quantum chemical calculations were carried out on CO oxidation catalyzed by a single gold atom. To investigate the performance of density functional theory (DFT) methods, 42 DFT functionals have been evaluated and compared with high-level wavefunction based methods. It was found that in order to obtain accurate results the functionals used must treat long range interaction well. The double-hybrid mPW2PLYP and B2PLYP functionals are the two functionals with best overall performance. CAM-B3LYP, a long range corrected hybrid GGA functional, also performs well. On the other hand, the popular B3LYP, PW91, and PBE functionals do not show good performance and the performance of the latter two are even at the bottom of the 42 functionals. Our accurate results calculated at the CCSD(T)/aug-cc-pVTZ//mPW2PLYP/aug-cc-pVTZ level of theory indicate that Au atom is a good catalysis for CO oxidation. The reaction follows the following mechanism where CO and O(2) adsorb on Au atom forming an Au(OCOO) intermediate and subsequently O(2) transfer one oxygen atom to CO to form CO(2) and AuO. Then AuO reacts with CO to form another CO(2) to complete the catalytic cycle. The overall energy barrier at 0 K for the first CO oxidation step (Au + CO + O(2)→ AuO + CO(2)) is just 4.8 kcal mol(-1), and that for the second CO oxidation step (AuO + CO → Au + CO(2)) is just 1.6 kcal mol(-1).  相似文献   

3.
To elucidate the mechanism of reaction M+ + SCO, the reaction of Cr+ + SCO has been investigated using density functional theory (DFT) with the popular hybrid functional, B3LYP, in conjunction with 6‐311+G* basis set on both the sextet and quartet potential energy surfaces (PESs). To obtain an accurate evaluation of the activation barrier and reaction energy, the coupled cluster single‐point calculations using the B3LYP structures is performed. The crossing points (CPs) of the different PESs have been localized with the approach suggested by Yoshizawa and colleagues. The involving potential energy curve‐crossing dramatically affects reaction mechanism. The present results show that the reaction mechanism is insertion‐elimination mechanism both along the C? S and C? O bond activation branches, but the C? S bond activation is much more favorable than the C? O bond activation in energy. All theoretical results not only support the existing conclusions inferred from early experiment study, but also complement the pathway and mechanism for this reaction. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

4.
Intermolecular interactions between a prototypical transition metal hydride WH(CO)2NO(PH3)2 and a small proton donor H2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20–30% of the bond energy and to 30–40% of the bond enthalpy. An energy decomposition analysis reveals that the H?H bond of transition metal hydrides contains both covalent and electrostatic contributions.  相似文献   

5.
在密度泛函理论框架下, 应用不同泛函计算了配合物Ni(CO)n(n=1~4)的平衡几何构型和振动频率. 考察了泛函和基组重叠误差对预测Ni—CO键解离能的影响. 计算结果表明, 用杂化泛函能得到与实验一致的优化几何构型和较合理的振动频率. 对Ni(CO)n(n=2~4)体系, 用“纯”泛函, 如BP86和BPW91, 可得到与CCSD(T)更符合、 并与实验值接近的解离能. 当解离产物出现单个金属原子或离子(如金属羰基配合物的完全解离)时, BSSE校正项的计算中应保持金属部分的电子结构一致. 只有考虑配体基组和不考虑配体基组两种情况下金属的电子构型与配合物中金属的构型一致时, 才能得到合理的BSSE校正, 从而预测合理的解离能.  相似文献   

6.
The structural and binding properties of diatomic molecules CO, NO and O2 to P450 heme were investigatedin two different models (labeled as M1 and M2) using density functional method at the B3LYP/6-31G(d)level. The e?ects of the serine residue near diatomic molecules XO were considered in the model M2. Theresults show that the serine residue near the heme enforced the binding of XO to heme. Frequency analysisindicates that the stretching vibrational frequency decreased as CO, NO, and O2 complex with heme.  相似文献   

7.
在G2(B3LYP/MP2/CC)理论水平上研究了CH(X2∏)自由基与氧化二氮(NNO)分子的反应.计算了反应体系的最低二重态势能面上各驻点的构型参数、振动频率和能量,揭示了此反应存在两种机理和六个通道其中HC和NNO复合,生成中间体HC(N)NO,解离得到产物HCN+NO,这是最主要的通道之一;HC插入NO键,克服38.9 KJ/mol的势垒,产生富能的中间体HC(O)NN,预测了五个反应通道,其中主要反应通道为:NN+HCO.  相似文献   

8.
We report calculations of the ground state energy and binding curve of the chromium dimer using the variational and diffusion quantum Monte Carlo (VMC and DMC) methods. We examined various single‐determinant and multideterminant wavefunctions multiplied by a Jastrow factor as a trial/guiding wavefunction for VMC/DMC. The molecular orbitals in the single determinants were calculated using restricted or unrestricted Hartree–Fock or density functional theory (DFT) calculations where five commonly used local (SVWN5), semilocal (PW91 and BLYP), and hybrid (B1LYP and B3LYP) functionals were examined. The multideterminant expansions were obtained from the generalized valence bond and (truncated) unrestricted configuration interaction with single and double excitations (UCISD) methods. We also examined a UCISD wavefunction in which UCISD expansions were added to the UB3LYP single‐determinant reference, and their coefficients were optimized at the VMC level. In addition to the wavefunction dependence, the effects of pseudopotentials and backflow transformation were also investigated. The UB3LYP single‐determinant and multideterminant wavefunctions were found to give the variationally best DMC energies within the framework of single‐determinant and multideterminants, respectively, though both the DMC energies were higher than twice the DMC atomic energy. Some of the VMC binding curves show a flat or quite shallow well bottom, which gets recovered deeper by DMC. All the DMC binding curves have a minimum indicating a bound state, but the unrestricted ones overestimate the equilibrium bond length. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

9.
The scaling of dynamical correlation energy in molecules obtained by the correlation functionals of density functional theory (DFT) is examined. The approach taken is very similar to the scaled external correlation method of Brown and Truhlar but is based on the observation that DFT correlation functionals, especially the LYP, appear to represent the dynamical portion of the correlation energy in molecules. We examine whether higher accuracy in atomization energies can be gained by scaling without significant deterioration of the structural and spectroscopic properties of the molecules using four DFT functionals (BLYP, OLYP, B3LYP, and O3LYP) on 19 molecules including the six molecule AE6 database, the latter being representative of a much larger, 109 molecule training set. We show that, with molecule specific scale factors, nearly perfect agreement with experiment can be achieved in atomization energies without increasing the average errors in other molecular properties relative to the DFT calculation. We further show that it is possible to find optimal scale factors which reduce the mean unsigned error per bond to levels comparable to those of some multilevel multicoefficient methods.  相似文献   

10.
The adsorption of CO on Fe, Pt and Co clusters was modeled by the DFT approach using the B3LYP and the BPW91 functionals together with the LANL2DZ and the 6-31G(d) basis set. These calculations show that although CO adsorbs more strongly on Pt than on either Fe or Co, the dissociation energy on Fe and on Co is lower than the corresponding dissociation energy on Pt. Therefore, the activation energy for dissociation is not determined by the adsorption energy. Additionaly, the CO bond distances also do not show any correlation to the adsorption energy.  相似文献   

11.
Quantum chemical calculations of CF(3)Br and the CF(3) radical are performed using density functional theory (DFT) and time-dependent DFT (TDDFT). Molecular structures, vibrational frequencies, dipole moment, bond dissociation energy, and vertical excitation energies of CF(3)Br are calculated and compared with available experimental results. The performance of six hybrid and five hybrid meta functionals in DFT and TDDFT calculations are evaluated. The ωB97X, B3PW91, and M05-2X functionals give very good results for molecular structures, vibrational frequencies, and vertical excitation energies, respectively. The ωB97X functional calculates well the dipole moment of CF(3)Br. B3LYP, one of the most widely used functionals, does not perform well for calculations of the C-Br bond length, bond dissociation energy, and vertical excitation energies. Potential energy curves of the low-lying excited states of CF(3)Br are obtained using the multiconfigurational spin-orbit ab initio method. The crossing point between 2A(1) and 3E states is located near the C-Br bond length of 2.45 ?. Comparison with CH(3)Br shows that fluorination does not alter the location of the crossing point. The relation between the calculated potential energy curves and recent experimental result is briefly discussed.  相似文献   

12.
We show that the energetics and electronic couplings for excess electron transfer (EET) can be accurately estimated by using unoccupied Kohn-Sham orbitals (UKSO) calculated for neutral pi stacks. To assess the performance of different DFT functionals, we use MS-PT2 results for seven pi stacks of nucleobases as reference data. The DFT calculations are carried out by using the local spin density approximation SVWN, two generalized gradient approximation functionals BP86 and BLYP, and two hybrid functionals B3LYP and BH&HLYP. Best estimations within the UKSO approach are obtained by the B3LYP and SVWN methods. TD DFT calculations provide less accurate values of the EET parameters as compared with the UKSO data. Also, the excess charge distribution in the radical anions is well described by the LUMOs of neutral systems. In contrast, spin-unrestricted DFT calculations of radical anions considerably overestimate delocalization of the excess electron. The excellent results obtained for the ground and excited states of the radical anions (excitation energy, transition dipole moment, electronic coupling, and excess electron distribution) by using UKSO of neutral dimers suggest an efficient strategy to calculate the EET parameters for DNA pi stacks.  相似文献   

13.
DFT calculations were carried out to study heme complexes with diatomic ligand (CO, NO, or O(2)) and trans-imidazole ligand. The optimized electronic ground states of CO, NO, and O(2) adducts are singlet, doublet, and open-shell singlet, respectively. For O(2) adduct, the open-shell singlet is slightly lower in energy than the close-shell singlet. However, important differences are found in optimized structures and vibrational frequencies. Particularly, the trans-imidazole-induced frequency up-shift of the Fe-O(O) stretching mode can be predicted only with the open-shell singlet as ground state. An analysis of normal modes confirms that the up-shifts in the bent (NO and O(2) ) adducts are mainly due to mixing of Fe-X(O) stretching mode with Fe-X-O bending coordinate. Our study of binding mechanism indicates that a secondary source of the upshifts is the diminished weakening of the Fe-X(O) bonds. The Fe-X(O) bond strengths are modulated by σ competition mechanism, which weakens the Fe-X(O) bond and σ-π cooperation mechanism, which only exists in the bent adducts and enforce the Fe-X(O) bond. -  相似文献   

14.
15.
Information on the accuracy of DFT functionals for redox reactions in transition metal systems is rather limited. To analyze the performance of some popular functionals for redox reactions in manganese systems, calculated O--H bond dissociation enthalpies for Mn-ligands in six different complexes are compared to experimental results. In this benchmark, B3LYP performs well with a mean absolute error of 3.0 kcal/mol. B98 gives similar results to B3LYP (error of 3.8 kcal/mol). B3LYP* gives lower O--H bond strengths than B3LYP and has a mean error of 5.0 kcal/mol. Compared to B98 and B3LYP, B3LYP* has an error trend for the manganese ligands that is more similar to the error for a free water molecule. The nonhybrid functional BLYP consistently and significantly underestimates the O--H bond strengths by approximately 20 kcal/mol. HCTH407 has a rather large mean error of 9.4 kcal/mol and shows no consistent trend. The results support the use of hybrid functionals and the present computational method for large model systems containing manganese. An example is the oxygen evolving complex in photosystem II where hybrid functionals predict the appearance of a Mn(IV)-oxyl radical before the O--O bond formation step.  相似文献   

16.
黄晶晶  齐永锋 《化学通报》2015,78(7):655-658
本文应用密度泛函理论B3LYP方法,分别研究了空白气氛、O2气氛、CO气氛对煤焦吸附NO的影响。建立了由6个苯环组成的煤焦模型,计算得到了在不同气氛、不同吸附位置的吸附能。在O2气氛下,吸附效果最好的方式依然为平行吸附,但吸附能绝对值较空白气氛减小,O2氛围抑制了煤焦对NO的吸附;在CO气氛下,吸附效果最好的方式为平行吸附且吸附能绝对值较空白气氛有所增加,CO氛围促进了煤焦对NO的吸附。  相似文献   

17.
Quantum chemical DFT calculations using the B3LYP functionals have been carried out for the electronically unsaturated 16 VE five-coordinate osmium boryl-complexes [(PH3)2(CO)ClOs-BR2] and the 18 VE six-coordinate complexes [(PH3)2(CO)2ClOs-BR2] with BR2 = BH2, BF2, B(OH)2, B(OHC=CHO), and Bcat (cat = catecholate O2C6H4). The bonding situation of the Os-BR2 bond was analyzed with the help of the NBO partitioning scheme. The Os-B bond dissociation energies of the 16 VE complexes are very high, and they do not change very much for the different boryl ligands. The 18 VE complexes have only slightly lower bond energies than the 16 VE species. The Os-B bond in both classes of compounds is provided by a covalent sigma-bond which is polarized toward osmium and by strong charge attraction. Os-->B pi-donation is not important for the Os-B binding interactions, except for the Os-BH2 complexes. The stability of the boryl complexes [Os]-BR2 comes mainly from B<--R pi-donation, which is clearly higher than the Os-->B pi-donation. The intraligand charge distribution of the BR2 group changes little when the Os-B bond is formed, except for BH2. The CO ligand in [(PH3)2(CO)2ClOs-BR2] which is trans to BR2 has a relatively weak bond to the osmium atom.  相似文献   

18.
1 INTRODUCTION Butene and its isomers are important petroleum raw materials. Isomerization reaction of butene plays a key role in the course of C4 alkylation and its reaction mechanism has captured the attention of chemists all along[1, 2]. As a green so…  相似文献   

19.
A new chelidamate complex, [Cu(chel)(H2O)2(mpd)] (chel = chelidamate; mpd = 4-methylpyrimidine), has been synthesized and characterized through a combination of single crystal X-ray analysis, electron paramagnetic resonance (EPR), ultraviolet-visible (UV-vis), and fourier transform infrared spectroscopy (FT-IR). The complex has six-coordinate distorted octahedral geometry around Cu(II). The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using Density Functional Theory (DFT)/B3LYP and Hartree Fock quantum chemical methods with 6-31G(d, p) basis set by Gaussian 09W software. The EPR spectrum of the compound showed that the paramagnetic center has rhombic symmetry. The EPR studies were carried out using the following unrestricted hybrid density functionals: B3LYP, CAM-B3LYP, HSEH1PBE, WB97XD, MPW1PW91, and BPV86. The UV–vis absorption spectra have been examined in different media and compared with the calculated one using TD-DFT method by applying the polarizable continuum model. Natural bond orbital property of complex has been performed by DFT/B3LYP with 6-31G (d, p) basis set.  相似文献   

20.
The present work is a theoretical investigation on lithium complexes of N-confused tetraphenylporphyrins (aka inverted) employing density functional theory (DFT) and time-dependent DFT, using the B3LYP, CAM-B3LYP, and M06-2X functionals in conjunction with the 6-31G(d,p) basis set. The purpose of the present study is to calculate the electronic structure and the bonding of the complexes to explain the unusual coordination environment in which Li is found experimentally and how the Li binding affects the Q and the Soret bands. The calculations show that, unlike a typical tetrahedral Li(+) cation, this Li forms a typical bond with one N and interacts with the remaining two N atoms, and it is located in the right place to form an agostic-like interaction with the internal C atom. The reaction energy, the enthalpy for the formation of the lithium complexes of N-confused porphyrins, and the effect of solvation are also calculated. The insertion of Li into N-confused porphyrin, in the presence of tetrahydrofuran, is exothermic with a reaction energy calculated to be as high as -72.4 kcal/mol using the lithium bis(trimethylsilyl)amide reagent. Finally, there is agreement in the general shape among the vis-UV spectra determined with different functionals and the experimentally available ones. The calculated geometries are in agreement with crystallographic data, where available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号