首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶胶凝胶法制备了可见光响应型Fe掺杂SiO2/TiO2光催化材料,并采用TG-DTA、XRD、UV-vis、TEM及XPS等手段对其进行了表征.以水中腐殖酸的降解为探针反应,考察了可见光照射下Fe-SiO2/TiO2的光催化活性.XRD结果表明,Fe离子掺杂可抑制催化剂晶粒尺寸,600℃焙烧后的Fe-SiO2/TiO2为锐钛矿相结构.Ur-vis吸收光谱分析可看出Fe离子掺杂提高了催化剂对可见光的吸收能力,并使催化剂的吸收带边产生了红移.XPS光谱表明,催化剂表面存在着Fe2+和Fe3+.实验结果表明,Fe-SiO2/TiO2在可见光下对腐殖酸的光催化降解率优于SiO2/TiO2和TiO2.Fe-SiO2/TiO2具有较高光催化活性的主要原因为:Fe离子掺杂不仅使SiO2/TiO2催化剂的粒径减小和对可见光的吸收增强,而且在催化剂表面产生了有利于光生e--h+对分离的Fe3+/Fe2+氧化还原循环电对.  相似文献   

2.
以钛酸丁酯为原料,采用溶胶凝胶法合成了纯TiO2与Nd掺杂TiO2纳米粉体,对其进行了350℃至850℃的热处理.利用XRD、SEM、和EDS对粉体的晶型结构,微观形貌和元素成分进行表征,研究了Nd掺杂对TiO2晶粒尺寸以及晶型转变的影响.结果表明:样品晶粒尺寸达到纳米级别,Nd掺杂后TiO2晶粒尺寸减小.纯TiO2在550℃时已经有金红石生成,750℃完成锐钛矿向金红石的转变;Nd掺杂TiO2在750℃时仍然是锐钛矿,850℃时有少许金红石生成,Nd掺杂提高了TiO2锐钛矿结构的热稳定性.  相似文献   

3.
采用溶胶-凝胶法制备了掺杂1 mol%Nd3+、Eu3+、Tb3+的TiO2纳米光催化剂,通过X射线衍射、比表面积、紫外-可见吸收光谱等对制备的光催化剂进行了表征,并通过甲基橙的光催化降解研究了样品的光催化性能。结果表明,稀土离子的掺杂能有效抑制TiO2纳米粒子的生长,进而增大比表面积,并且掺杂纳米TiO2光催化剂紫外-可见吸收带边都有一定的红移;掺杂纳米TiO2光催化剂的活性优于未掺杂纳米TiO2光催化剂,其中Eu3+/TiO2的光催化活性为最强。  相似文献   

4.
以电气石为载体,TiCl4为前驱体,采用水解沉淀法负载La掺杂纳米TiO2薄膜,制备La掺杂TiO2/电气石复合材料.结合XRD、FESEM、UV-vis等现代测试手段对所制备样品的结构和性能进行了表征.以甲醛为目标降解物,考察了样品的光催化活性.结果表明:La掺杂TiO2晶粒细小,均匀分布于电气石表面.经550℃煅烧,La掺杂后锐钛矿型TiO2粒径由13.5 nm降为8.73 nm.La掺杂后,TiO2光催化剂的吸收光谱向可见光区发生红移.1m3环境舱内,日光灯下照射360 min,La掺杂TiO2前后复合材料对甲醛的去除率分别达到66.4;和82.2;.  相似文献   

5.
以水热法制备出的钛酸盐纳米带为原料,利用二次水热反应制备了Gd3+掺杂TiO2纳米带.采用XRD、TEM和N2吸附-脱吸等手段对样品的晶型、微观形貌及比表面积进行了表征,讨论了Gd3+掺杂浓度、二次水热温度对材料结构及性能的影响.研究结果表明,Gd3+的掺杂没有影响原有样品的晶型,样品保持了锐钛矿相,但二次水热温度过高会破坏纳米带的形状,掺杂提高了样品的光催化活性,最佳掺杂量为5.O;.以掺杂量为5.0;、二次水热温度为180°C制备出的样品为光催化剂降解甲基橙,在光照180min后,甲基橙的降解率可达68;.  相似文献   

6.
以钛酸丁酯为钛源,采用溶胶-凝胶法制备纳米TiO2,结合TG-DTA,XRD,TEM等分析了不同热处理温度对纳米TiO2的晶型结构、晶粒粒径及微观形貌的影响.以甲基橙溶液为目标降解物,探讨了热处理温度对纳米TiO2光催化活性影响.利用Eastman的粒子生长理论对晶粒生长的动力学过程进行初步分析.研究表明:随着热处理温度升高,TiO2粒径逐渐从11.2 nm增大到78.6 nm;热处理温度为450~ 550℃时,纳米TiO2晶粒以锐钛矿为主,温度升至650℃时,出现了锐钛矿和金红石的混合相(质量比A∶R =9∶1),此时晶粒对甲基橙的降解率达到97.75;.而煅烧温度高于850℃后,TiO2几乎完全为金红石相,光催化活性显著下降.50;锐钛矿型TiO2转变金红石型TiO2的温度约为730℃,锐钛矿和金红石相晶粒表观活化能分别18.15 kJ/mol和42.56 kJ/mol;晶粒生长最快温度分别为546℃和1280℃.  相似文献   

7.
采用溶胶-水热法制备了Yb3-Ho3+-F-共掺杂的TiO2(简写为UC-F-TiO2)纳米粉末.通过XRD,TEM,拉曼光谱,XPS和发光光谱,研究了yb3掺杂浓度对UC-F-TiO2纳米粉末的结构、形貌和上转换发光性能的影响规律.结果表明:UC-F-TiO2纳米粉末颗粒的大小约20 nm,由金红石和锐钛矿两种结构混合组成,且随着yb3+掺杂浓度的增加,金红石结构的TiO2所占比例增加;在980 nm激光激发下,UC-F-TiO2发射出中心在543 nm、647 nm和751 nm处的三个发光带.研究了基于UC-F-TiO2和纯TiO2纳米多孔薄膜光阳极的染料敏化电池的光伏性能.结果表明:与纯TiO2制备的电池相比,将UC-F-TiO2应用于染料敏化电池,电池的光电转换效率提高了29.7;.  相似文献   

8.
铋铁共掺纳米TiO2复合薄膜的制备及光催化性能   总被引:1,自引:1,他引:0  
本文以钛酸丁酯、硝酸铋、硝酸铁为主要原料,采用溶胶-凝胶法制备了铋铁共掺的纳米TiO2复合薄膜.用XRD、UV-VIS、SEM及降解率等方法对样品进行了表征.以甲基橙为降解物,考察Bi3+和Fe3+掺杂对TiO2复合薄膜催化剂的光催化活性影响及其机理研究.结果表明Bia+和F3+掺杂后,纳米TiO2复合薄膜光催化活性有了明显的提高.  相似文献   

9.
采用溶胶-凝胶法制备了纯TiO2和稀土Sm掺杂TiO2纳米粉体( Sm-TiO2),通过XRD、XPS、FT-IR、UV-Vis-DRS、PL和Nano-sizer纳米粒度仪等对样品进行表征,以亚甲基蓝( MB)的光催化降解为探针反应,探讨稀土Sm掺杂对纳米TiO2的结构和可见光催化性能的影响。结果表明,Sm掺入TiO2后在表面存在Sm3+和Sm2+两种价态, Sm掺杂抑制了TiO2从锐钛矿向金红石的相转变,阻碍纳米晶粒生长,增加了纳米粉体表面羟基含量;适量的Sm掺杂能使TiO2吸收光谱的阈值波长红移,有效降低光生e-/h+的复合率,提高TiO2光催化活性。热处理温度500℃时,掺杂1.0wt;Sm的纳米TiO2样品在普通日光灯下对MB在6 h内的光催化降解效率达97;,明显高于同等条件下Degussa公司产品P25的降解率56;。  相似文献   

10.
为了研制分解汽车尾气路面TiO2涂层,以钛酸丁酯为Ti源、硝酸铁为Fe源,尿素为N源,采用水热法合成了Fe-N共掺杂TiO2((Fe,N)-TiO2)纳米粉体.采用X射线衍射仪、透射电子显微镜、X射线光电子能谱、紫外-可见光谱仪等对样品进行了表征.结果表明合成的(Fe,N)-TiO2样品均为锐钛矿晶型,样品的平均粒径大小约为7.2nm.Fe、N共掺杂对TiO2的晶体结构没有明显影响,Fe和N离子都已经进入TiO2晶格.相对于纯TiO2而言,随着Fe和N离子的掺入,(Fe,N)-TiO2样品在可见光范围内吸光强度明显增强,光吸收带边发生红移.以可见光光催化降解亚甲基蓝(MB)研究了样品的光催化性能,(Fe,N)-TiO2对MB的降解能力较纯TiO2和N-TiO2有明显提高,说明Fe和N离子共掺杂会产生协同效应,使(Fe,N)-TiO2样品在可见光区域的光催化活性得到显著提高.  相似文献   

11.
La,Pr,Nd掺杂对纳米TiO2光催化性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
采用水解共沉淀法制备了稀土元素(La, Pr, Nd)掺杂量为0.5wt;~1.5wt;的TiO2光催化剂样本,并对其进行了XRD、TG-DTA、TEM、BET和UV-Vis表征.结果表明,所制备的TiO2光催化剂是以锐钛矿晶型为主的纳米颗粒,掺杂抑制了TiO2晶型由锐钛矿向金红石的转变,同时减小了晶粒尺寸、增大了比表面积、提高了吸光度,且使TiO2半导体的吸光范围发生了红移.将制得的TiO2光催化剂应用于溶液中草酸的降解反应,用K2MnO4滴定法分析降解效率,发现经掺杂改性后的TiO2样本光催化效率均有提高.其中,以掺杂量为1.0wt;的La掺杂样本具有最高的降解效率,与纯TiO2样本相比对草酸的降解率提高了近45;.  相似文献   

12.
通过溶胶-凝胶法制备了Sm、C分别单掺杂和共掺杂纳米TiO2光催化剂,采用XRD、FESEM、TEM、XPS、UV-Vis-DRS、PL、Nano-sizer纳米粒度分析仪等对样品进行表征,以光催化降解亚甲基蓝(MB)作为评价模型,研究了不同样品对MB的光催化降解效果.结果表明,Sm单掺杂抑制了TiO2从锐钛矿向金红石的相转变,抑制晶粒长大,C的单掺杂则促进了TiO2的相转变,Sm或(和)C的掺杂均能细化TiO2晶粒,拓展TiO2在可见光区的光谱响应范围,降低光生e-/h+对的复合几率.Sm、C的掺杂均能有效提高TiO2的光催化活性,且共掺杂时存在协同效应,当n(Sm)∶n(C)∶n(Ti)=0.01∶0.3∶1、热处理温度500 ℃时,Sm/C-TiO2样品在普通日光灯下催化降解MB的一级表观速率常数是相同条件下纯TiO2的4.3倍.  相似文献   

13.
包镇红  江伟辉  苗立锋 《人工晶体学报》2012,41(4):995-999,1005
采用非水解溶胶-凝胶法制备了Si、Al共掺杂的TiO2薄膜.应用X射线衍射、紫外可见分光光度计研究了Si、Al掺杂对TiO2薄膜晶型转变、晶粒尺寸、光吸收性能及光催化性能的影响.结果表明:适量引入Si、Al后,可显著提高1000℃热处理后TiO2薄膜的光催化活性;当Si/Ti物质的量比为0.2时,薄膜由于混晶结构光催化活性最佳;Si、Al共掺杂能抑制TiO2的晶型转变及TiO2的晶粒生长,且Si、Al共掺杂的抑制作用比单一Si掺杂更有效;当Si/Ti物质的量比为0.15、Al/Ti物质的量比为0.05时,TiO2锐钛矿向金红石的转变温度从750℃提高到1200℃.  相似文献   

14.
本文采用微波吸收介电谱检测技术,系统研究了甲酸根离子掺杂的立方体卤化银乳剂在35ps脉冲激光作用下所产生的光电子衰减行为,分析了甲酸根离子的空穴陷阱效应以及光电子衰减特性与掺杂条件的关系.通过分析不同位置和浓度甲酸根离子掺杂的立方体AgBr乳剂中光电子衰减时间特性,讨论了AgBr乳剂中甲酸根离子掺杂条件的变化对光电子衰减的影响,揭示了其空穴陷阱效应的作用机理.实验结果表明:不同浓度的甲酸根离子对立方体AgBr乳剂都有增感作用,最佳掺杂浓度为10-3mol/molAg;最佳掺杂位置是90;,说明了在接近微晶表面掺杂的空穴陷阱对提高乳剂感光度有较好的作用.  相似文献   

15.
采用固相合成法制备了Fe2O3掺杂(Ba0.7Ca0.3)TiO3-Ba(Zr0.2Ti0.8)O3(简称BCZT)无铅压电陶瓷。借助XRD、SEM、阻抗分析仪等对该陶瓷的相组成、显微结构以及压电和介电性能进行了研究。结果表明,Fe2O3掺杂降低了BCZT无铅压电陶瓷的烧结温度并使居里温度Tc从85℃提高到95℃;当Fe2O3掺杂为0.02wt%~0.1wt%时,陶瓷样品均为ABO3型钙钛矿结构;少量Fe2O3掺杂促进了陶瓷晶粒的生长,但随着Fe2O3掺杂量进一步增加,陶瓷晶粒随之细化;当Fe2O3掺杂量为0.04wt%时,陶瓷样品具有最优综合电性能,其压电常数d33、机电耦合系数kp、机械品质因数Qm、介电损耗tanδ和介电常数εr分别为400 pC/N,0.40,51,0.023和3482。  相似文献   

16.
In this paper, 2 μm emission spectra of Yb–Ho doped fluorophosphate glass are investigated and compared with Yb–Tm–Ho doped fluorophosphate glass. The 2 μm emission intensity of Yb–Ho doped fluorophosphate glass is much stronger than that of Yb–Tm–Ho doped fluorophosphate glass, exhibiting that Yb–Ho doping is an appropriate doping system to 2 μm application. As the doping concentration of Yb3+ ions in Yb–Ho doped fluorophosphate glass increases, the 2 μm emission intensity increases monotonously and possesses a maximum for 10% Yb ions concentration. Therefore, 10% is the optimization of Yb ions doping concentration for 2 μm emission. Otherwise, the up-conversion emission of Ho3+ ions is also studied. Combining with the energy transfer processes, the mechanism is discussed.  相似文献   

17.
纳米TiO2薄膜的制备与光催化性能研究   总被引:1,自引:0,他引:1  
以四氯化钛为前驱体,采用水解沉淀法,在不同的水解温度下,在硅藻土基多孔陶瓷上负载纳米TiO2薄膜,结合XRD和TEM对负载的纳米TiO2粒径进行了表征。对比分析了测试方法及水解温度对纳米TiO2粒径的影响。以罗丹明B为目标降解物,考察了水解温度对光催化剂活性的影响。结果表明:样品经550℃煅烧后,TiO2薄膜为锐钛矿型;水解温度为50℃时TiO2粒径小于水解温度为75℃时所负载纳米TiO2粒径;两种方法所测TiO2粒径有一定差异:dXRD>dTEM;水解温度为50℃所负载纳米TiO2薄膜,紫外光照300 min,对罗丹明B的去除率为89.9%,而75℃时,样品在紫外光照330 min,对罗丹明B的去除率为78.6%。  相似文献   

18.
N doped TiO2 with anatase and rutile mixed crystal were prepared by using tetrabutyl titanate as the precursor via a modified hydrothermal process and calcination at 320 °C. The microstructure and morphology of samples were characterized by XRD, UV-vis-DRS, FTIR and XPS. The results showed that N-TiO2 particles were crystallized to anatase and rutile mixed crystal structure; they were presented narrow particle size distribution, and the average particle size was ca. 13.5 nm calculated from XRD results. It was found that the N-doped TiO2 particles showed strong visible-light absorption and high photocatalytic activity for the mineralization of Rhodamine B under irradiation by visible light (400-500 nm). The high visible-light photocatalytic activity of the obtained N-doped TiO2 might result from the synergetic effect of nitrogen doping and the mixed lattice structure of N-TiO2. Possible mechanism of N-TiO2 mixed crystal formed under hydrothermal conditions was discussed.  相似文献   

19.
ZnO:Al ceramics (Zn:Al, 0.95:0.05) were prepared by using sol‐gel derived nanocrystalline powders. XRD patterns of the doped ceramics revealed the existence of both zincite (JCPDS 36‐1451) and gahnite (JCPDS 5‐0669) phases. Gahnite phase (ZnAl2O4) was segregated along the ZnO grain boundaries. At the sintering temperature of 1200 °C, relative density of the undoped and Al doped ceramics were measured as 0.695 and 0.628, respectively. Both grain size and relative density of the ceramics decreased with Al doping. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
采用基于密度泛函理论的第一性原理研究了 N掺杂, Nd掺杂,和Nd/N共掺杂对锐钛矿相TiO2晶格参数、能带结构、电荷布居、电子态密度和光吸收性质的影响.结果表明,杂质的引入不同程度的改变了TiO2的晶格参数,Nd的掺杂使TiO6八面体畸变最大;N掺杂TiO2使带隙宽度减小,且在价带顶出现杂质能级;Nd掺杂和Nd/N共掺杂不仅使TiO2带隙宽度减小并在其价带和导带之间出现了空带,空带主要由Nd原子的4f轨道能级所贡献;由于禁带宽度的减小和杂质能级的出现使得掺杂后TiO2的吸收光谱的吸收边向可见光方向移动,增加了物质对光吸收的响应范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号