首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The colon specific drug delivery systems based on polysaccharides; locust bean gum and chitosan in the ratio of 2 : 3, 3 : 2 and 4 : 1 were evaluated using in vitro and in vivo methods. The in vitro studies in pH 6.8 phosphate buffer containing 2% w/v rat caecal contents showed that the cumulative percentage release of mesalazine after 26 h were 31.25+/-0.56, 46.25+/-0.96, 97.5+/-0.26 (mean+/-S.D.), respectively. The in vivo studies conducted in nine healthy male human volunteers for the various formulations revealed that, the drug release was initiated only after 5 h (i.e.) transit time of small intestine and the bioavailability (AUC(0-->t*)) of the drug was found to be 85.24+/-0.10, 196.08+/-0.12, 498.62+/-0.10 microg x h/ml 26 (mean+/-S.D.), respectively. These studies on the polysaccharides demonstrated that the combination of locust bean gum and chitosan as a coating material proved capable of protecting the core tablet containing mesalazine during the condition mimicking mouth to colon transit. In particular, the formulation containing locust bean gum and chitosan in the ratio of 4 : 1 held a better dissolution profile, higher bioavailability and hence a potential carrier for drug targeting to colon.  相似文献   

2.
The efficient delivery of macromolecules to living cells presents a formidable challenge to the development of effective macromolecular therapeutics and cellular probes. We describe herein a novel synthetic ligand termed "Streptaphage" that enables efficient cellular uptake of the bacterial protein streptavidin by promoting noncovalent interactions with cholesterol and sphingolipid-rich lipid raft subdomains of cellular plasma membranes. The Streptaphage ligand comprises an N-alkyl derivative of 3 beta-cholesterylamine linked to the carboxylate of biotin through an 11-atom tether. Molecular recognition between streptavidin and this membrane-bound ligand promotes clathrin-mediated endocytosis, which renders streptavidin partially intracellular within 10 min and completely internalized within 4 h of protein addition. Analysis of protein uptake in Jurkat lymphocytes by epifluorescence microscopy and flow cytometry revealed intracellular fluorescence enhancements of over 300-fold (10 microM ligand) with >99% efficiency and low toxicity. Other mammalian cell lines including THP-1 macrophages, MCF-7 breast cancer cells, and CHO cells were similarly affected. Structurally related ligands bearing a shorter linker or substituting the protonated steroidal amine with an isosteric amide were ineffective molecular transporters. Confocal fluorescence microscopy revealed that Streptaphage-induced uptake of streptavidin functionally mimics the initial cellular penetration steps of Cholera toxin, which undergoes clathrin-mediated endocytosis upon binding to the lipid raft-associated natural product ganglioside GM1. The synthetic ligand described herein represents a designed cell surface receptor capable of targeting streptavidin conjugates into diverse mammalian cells by hijacking the molecular machinery used to organize cellular membranes. This technology has potential applications in DNA delivery, tumor therapy, and stimulation of immune responses.  相似文献   

3.
Protein Therapy is a newly developed method, which allows proteins, peptides and biologically active compounds to penetrate across the plasma membrane of eukaryotic cells by a polyarginine (most efficiently by 11-arginine, 11R) protein transduction domain. This method enables us to control the localization of targeted substances in subcellular compartments, such as the nuclei, mitochondria and post-synaptic density. The method is very efficient and applicable not only to cultured cells but also to tissue slices and the whole animal. Brain, heart, skeletal muscle, liver, pancreas and lymphocytes are efficient target organs and tissues for Protein Therapy. The method is therefore a very useful strategy in the post-genomic era. In this mini-review, the development of Protein Therapy and its application for cancer cells and neuroscience study will be shown.  相似文献   

4.
Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well‐developed biological chromatographic technique. In this study, we have developed combined SMMC‐7721/CMC and HepG2/CMC with high‐performance liquid chromatography and time‐of‐flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R2 = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery.  相似文献   

5.
Vesicles assembled from amphiphilic block copolymers represent promising nanomaterials for applications that include drug delivery and surface functionalization. One essential requirement to guide such polymersomes to a desired site in vivo is conjugation of active, targeting ligands to the surface of preformed self-assemblies. Such conjugation chemistry must fulfill criteria of efficiency and selectivity, stability of the resulting bond, and biocompatibility. We have here developed a new system that achieves these criteria by simple conjugation of 4-formylbenzoate (4FB) functionalized polymersomes with 6-hydrazinonicotinate acetone hydrazone (HyNic) functionalized antibodies in aqueous buffer. The number of available amino groups on the surface of polymersomes composed of poly(dimethylsiloxane)-block-poly(2-methyloxazoline) diblock copolymers was investigated by reacting hydrophilic succinimidyl-activated fluorescent dye with polymersomes and evaluating the resulting emission intensity. To prove attachment of biomolecules to polymersomes, HyNic functionalized enhanced yellow fluorescent protein (eYFP) was attached to 4FB functionalized polymersomes, resulting in an average number of 5 eYFP molecules per polymersome. Two different polymersome-antibody conjugates were produced using either antibiotin IgG or trastuzumab. They showed specific targeting toward biotin-patterned surfaces and breast cancer cells. Overall, the polymersome-ligand platform appears promising for therapeutic and diagnostic use.  相似文献   

6.
The ability to screen and identify new ligands for cell surface receptors has been a long-standing goal as it might allow targeting of pharmaceutically relevant receptors, such as integrins or G protein coupled receptors. Here, we present a method to amplify hits from a library of PNA-tagged peptides. To this end, human cells, overexpressing either integrins or the CCR6 receptor, were treated with a 10,000 member PNA-encoded peptide library. Extraction of the PNA tags from the surface of the cells was followed by a PNA-tag to DNA translation and amplification enabling decoding of the tags via microarray hybridization. This approach to ligand discovery facilitates screening for differences in surface-receptor ligands and/or receptor expression between different cell types, and opens up a practical approach to PNA-tag amplification.  相似文献   

7.
8.
Magnetic cobalt spinel ferrite nanoparticles coated with biocompatible polygalacturonic acid were functionalized with ligands specific for targeting expressed EphA2 receptors on ovarian cancer cells. By using such magnetic nanoparticle-peptide conjugates, targeting and extraction of malignant cells were achieved with a magnetic field. Targeting ovarian cancer cells with receptor specific peptide-modified magnetic nanoparticles resulted in cell capture from a flow stream in vitro and from the peritoneal cavity of mice in vivo. Successful removal of metastatic cancer cells from the abdominal cavity and circulation using magnetic nanoparticle conjugates indicate the feasibility of a dialysis-like treatment and may improve long-term survival rates of ovarian cancer patients. This approach can be applied for fighting other cancers, such as leukemia, once the receptors on malignant cells are identified and the efficacy of targeting ligands is established.  相似文献   

9.
Addition of a suspension of a surface membrane enriched fraction prepared from confluent 3T3 cells to sparse 3T3 cells in culture results in a concentration dependent and saturable decrease in the rate of DNA synthesis. The inhibition of cell growth by membranes resembles the inhibition of cell growth observed at confluent cell densities by a number of criteria: 1) In both cases the cells are arrested in the G1 portion of the cell cycle; 2) the inhibition by membranes or by high local cell density can to a large extent be compensated for by raising the serum concentration or by addition of fibroblast growth factor plus dexamethasone. Membranes prepared from sparse cultures inhibit less well than membranes from confluent cultures in a manner which suggests that binding of membranes to cells is not by itself sufficient to cause inhibition of cell growth. The inhibitory activity has a subcellular distribution similar to phosphodiesterase (a plasma membrane marker) and appears to reside in one or more intrinsic membrane components. Maximally, membranes can arrest about 40% of the cell population in each cell cycle. Plasma membranes obtained from sparse 3T3 cells are less inhibitory than membranes obtained from confluent cells. This suggests either that the inhibitory component(s) in the plasma membrane responsible for growth inhibition may be in part induced by high cell density, or that this component(s) may be lost from these membranes during purification.  相似文献   

10.
BACKGROUND: The emergence of bacteria that are resistant to vancomycin (V), a glycopeptide antibiotic, results from the replacement of the carboxy-terminal D-Ala-D-Ala of bacterial cell wall precursors by D-Ala-D-lactate. Recently, it has been demonstrated that covalent dimeric variants of V are active against vancomycin-resistant enterococci (VRE). To study the contribution of divalency to the activities of these variants, we modeled the interactions of V and a dimeric V with L-Lys-D-Ala-D-lactate, an analog of the cell-wall precursors of the vancomycin-resistant bacteria. RESULTS: A dimeric derivative of V (V-Rd-V) was found to be much more effective than V in inhibiting the growth of VRE. The interactions of V and V-Rd-V with a monomeric lactate ligand - diacetyl-L-Lys-D-Ala-D-lactate (Ac2KDADLac) - and a dimeric derivative of L-Lys-D-Ala-D-lactate (Lac-R'd-Lac) in solution have been examined using isothermal titration calorimetry and UV spectroscopy titrations; the results reveal that V-Rd-V binds Lac-R'd-Lac approximately 40 times more tightly than V binds Ac2KDADLac. Binding of V and of V-Rd-V to Nalpha-Ac-L-Lys-D-Ala-D-lactate presented on the surface of mixed self-assembled monolayers (SAMs) of alkanethiolates on gold indicates that the apparent off-rate for dissociation of V-Rd-V from the surface is much slower than that of V from the same surface. CONCLUSIONS: The results are compatible with the hypothesis that divalency is responsible for tight binding, which correlates with small values of minimum inhibitory concentrations of V and V-Rd-V.  相似文献   

11.
Methacryloyl groups are delivered on a living cell surface via a glycosylation pathway. The mannosamine derivative ManMA is synthesized as a precursor of cell-surface sialic-acid residues. HeLa cells are cultivated in a culture medium containing ManMA, after which a sufficient amount of PEG(4)10K-SH is in contact with the cells in the presence of a photoinitiator. The cells are then exposed to UV-light for 10 min. The immobilization of PEG(4)10K-SH, termed PEGylation, on the cell surface is confirmed by fluorescence microscopy. The surface modification does not influence cell viability. Biotinylation of cell surface can also be achieved by the addition of a vinyl compound during PEGylation. By using this process, the functionalities of a cell surface can be freely controlled.  相似文献   

12.
The antiarrhythmic clofilium is an efficient blocker of hERG1 potassium channels that are strongly expressed in the heart. Therefore, derivatives of clofilium that emit positrons might be useful tools for monitoring hERG1 channels in vivo. Fluoro- clofilium (F-clofilium) was synthesized and its channel-blocking properties were determined for hERG1 and hEAG1 channels expressed in HEK?293 cells and in Xenopus oocytes. When applied extracellularly in the whole-cell patch-clamp configuration, F-cloflium exhibited a slower onset of block when compared with clofilium, presumably owing to its lower membrane permeability. When applied in the inside-out configuration at the intracellular membrane side, it blocked hEAG1 channels almost as efficiently as clofilium (IC50 1.37 nM and 0.83 nM, respectively). Similar results were obtained for hERG1, showing F-clofilium is a potent hERG1 and hEAG1 channel blocker once it has reached the intracellularly accessible target site at the channel. Using the (18)F-labeled analog we studied the in vivo binding and distribution of F-clofilium in mice and a dog. Greatest activity was found in kidneys and bones. A small but significant enrichment of activity in the dog myocardium known for its expression of cERG1 channels allowed to depict the myocardium of a living dog by PET. Thus, F-clofilium is a useful tool for imaging hERG channels in living organisms.  相似文献   

13.
The present work examined the expression of cell surface glycoprotein antigens in cultured human cell lines. The set of glycoproteins studied was defined by their immunoreactivity with antiserum developed to Triton-solubilized extracts of placental brush border membranes. Studies were performed using cell lines of trophoblastic (BeWo, JEG-3) and nontrophoblastic (Chang liver cells) origin, as well as diploid fibroblast cell lines (WI-38, GM-38). Antiplacental brush border antiserum reacts with at least 19 distinct antigens present in placental membrane preparations, each of which can be resolved and identified in two-dimensional electrophoresis. The subunit molecular weight and isoelectric point for all components were defined by their positions in the two-dimensional matrix. Thirteen of these could be detected among the five cell lines examined by lactoperoxidase-catalyzed cell surface iodination. One of these 13 antigens has been identified as the placental isoenzyme of alkaline phosphatase (PAP). The expression of this component is limited to choriocarcinoma cells and Chang liver cells and it is not present in diploid fibroblasts. Under normal circumstances expression of PAP is unique to the differentiated placenta but has been frequently demonstrated in both trophoblastic and nontrophoblastic neoplasms. Two other antigens are variably expressed among the different cell types examined in the present study and their presence or absence was independent of the trophoblastic, epithelial nontrophoblastic, or fibroblastic origin of the cells. Ten surface antigens were expressed in all five cell lines. Six of these had previously been found common to membranes from three adult differentiated tissues, including liver and kidney, as well as placenta (Wada et al, J Supramol Struc 10(3): 287-305, 1979). The presence of this set of antigens in cultured cells as well extends the possibility that these are ubiquitously expressed on human cell surfaces. Two other antigens observed in all cultured cells had been found in both placental and either kidney or liver membranes and may represent common functions shared by many tissues which are also necessary for growth in vitro. The two remaining placental antigens seen in all cultured cells have previously been shown to be absent in adult tissues. Their presence in cultured cells but not in the membranes of resting differentiated tissues may signify the expression of glycoproteins characteristic of trophoblasts in all cells adapted to growth in culture.  相似文献   

14.
Polyhexylcyanoacrylate nanoparticles have been prepared with vincamine as the model drug. These particles had an average size of 200 nm and adsorbed approximately 435 of vincamine. The adsorption of vincamine to nanoparticles modified the distribution of vincamine in tissues. After iv injection the distribution volumes were increased in comparison with an aqueous solution of drug. In comparison with an aqueous solution of drug, the absolute bioavailability of vincamine was also increased after an oral administration of nanoparticles.  相似文献   

15.
Scientific evidence in the prevention and treatment of various disorders is accumulating regarding probiotics. The health benefits supported by adequate clinical data include increased resistance to infectious disease, decreased duration of diarrhea, management of inflammatory bowel disease, reduction of serum cholesterol, prevention of allergy, modulation of cytokine gene expression, and suppression of carcinogen production. Recent ventures in metabolic engineering and heterologous protein expression have enhanced the enzymatic and immunomodulatory effects of probiotics and, with time, may allow more active intervention among critical care patients. In addition, a number of approaches are currently being explored, including the physical and chemical protection of cells, to increase probiotic viability and its health benefits. Traditional immobilization of probiotics in gel matrices, most notably calcium alginate and kappa-carrageenan, has frequently been employed, with noted improvements in viability during freezing and storage. Conflicting reports exist, however, on the protection offered by immobilization from harsh physiologic environments. An alternative approach, microencapsulation in "artificial cells," builds on immobilization technologies by combining enhanced mechanical stability of the capsule membrane with improved mass transport, increased cell loading, and greater control of parameters. This review summarizes the current clinical status of probiotics, examines the promises and challenges of current immobilization technologies, and presents the concept of artificial cells for effective delivery of therapeutic bacterial cells.  相似文献   

16.
17.
Tobey SL  Anslyn EV 《Organic letters》2003,5(12):2029-2031
[structure: see text] A C(3)(v) symmetric synthetic receptor (1) was employed in an indicator-displacement assay to determine the phosphate concentrations in both horse serum and human saliva at biological pH. The determination of the phosphate concentrations in the serum and saliva using the colorimetric assay were 1.6 and 5.1 mM, respectively. These results further accentuate the usefulness of synthetic receptors in truly practical applications.  相似文献   

18.
The aminocoumarin antibiotics clorobiocin, novobiocin, and coumermycin A(1) are inhibitors of bacterial gyrase. Their chemical structures contain amide bonds, formed between an aminocoumarin ring and an aromatic acyl component, which is 3-dimethylallyl-4-hydroxybenzoate in the case of novobiocin and clorobiocin. These amide bonds are formed under catalysis of the gene products of cloL, novL, and couL, respectively. We first examined the substrate specificity of the purified amide synthetases CloL, NovL, and CouL for the various analogs of the prenylated benzoate moiety. We then generated new aminocoumarin antibiotics by feeding synthetic analogs of the 3-dimethylallyl-4-hydroxybenzoate moiety to a mutant strain defective in the biosynthesis of the prenylated benzoate moiety. This resulted in the formation of 32 new aminocoumarin compounds. The structures of these compounds were elucidated using FAB-MS and (1)H-NMR spectroscopy.  相似文献   

19.
We report an opto-microfluidic method for continuous and non-interfering monitoring of cell movement and dynamic molecular processes in living cells enabled by the microfluidic “Lab-in-a-Trench” (LiaT) platform. To demonstrate real-time monitoring of heterogeneous cell–cell interactions, cell tracking and agent-induced cell activation dynamics, we observe phagocytosis of Escherichia coli by murine macrophages, migration of active macrophages and LPS-induced CD86 expression in macrophages. The visualization of phagocytosis is facilitated through the loading of green fluorescent protein (GFP) expressing E. coli to the array of cell capture modules before the introduction of macrophages. Simple migration tracking of active macrophages is enabled by a spatio-temporal control of the environment conditions within the LiaT platform. Furthermore, we report an interference-free monitoring of non-modified, endogenous changes in protein expression on the surface of living cells using traditional, antibody immuno-reagents. Throughout the experiment, murine macrophages were captured in the LiaT device and exposed to sub-background levels of fluorescently labeled anti-CD86 antibody. Upon lipopolysaccharide (LPS) stimulation, CD86 changes were visualized in real-time by time-lapse microscopy. This novel opto-microfluidic effect is controlled by the equilibrium of convective–diffusive replenishment of fluorescently labeled antibodies and antibody affinity. Overall, our non-interfering analysis method allows the studying of active cellular processes and endogenous protein dynamics in live cells in a simple and cost-efficient manner.  相似文献   

20.
A new process of biological waste treatment was developed by use of microbial films grown on the liquid surface in a shallow flow reactor. The performance of this process was tested using a synthetic waste that contained acetic acid as a model organic pollutant. About 90% of acetic acid (10,000 mg/L-1) in the synthetic waste was removed by setting alpha tau: (alpha specific liquid surface area, cm-1, and tau: hydraulic liquid detention time, h) higher than 15 cm-1/h. It was necessary to maintain alpha large enough (more than 10 cm-1 in most cases) to satisfy oxygen demand for the biooxidation. The oxygen balance and TOC determinations showed that the acetic acid removed was completely oxidized with oxygen transferred through the liquid surface. This process would contribute to energy savings, since it requires no forced aeration for oxygen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号