首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
制备了一种纳米氧化铁修饰玻碳电极,并研究了镉离子在该修饰电极上的溶出伏安行为。结果表明,纳米氧化铁颗粒能有效促进镉离子的溶出伏安响应。在pH 6.0的磷酸缓冲溶液中,镉离子能有效吸附在纳米氧化铁表面并在-1.0 V时被还原。被还原的镉在正向扫描过程中可以重新氧化,并在-0.85 V处出现一明显的溶出伏安氧化峰。该峰电流随镉离子浓度的增大而增大,可用于对镉离子的检测。在最佳检测条件(pH 6.0,富集时间350 s,富集电位-1.0 V)下,镉离子的响应电流与其浓度在6.0×10-10~1.0×10-8mol/L以及1.0×10-8~1.0×10-5 mol/L范围内呈良好线性,检出限(S/N=3)为1.0×10-10 mol/L。干扰实验结果表明,一些常见的阳离子以及阴离子对镉离子的检测无明显干扰。将该方法用于实际样品的检测,回收率良好。  相似文献   

2.
制备了镍纳米粒子-离子液体修饰电极,在0.1 mol/L磷酸缓冲溶液(pH 6.0)中研究了多巴胺(DA)在修饰电极上的电化学行为.与裸电极相比,DA在该修饰电极上的氧化还原电位明显降低,氧化还原反应的峰电流明显增大,DA的峰电流与其浓度在2.0×10~(-8) ~1.0×10~(-4) mol/L范围内呈良好的线性关系,检出限为6.5×10~(-9) mol/L.该修饰电极对抗坏血酸具有明显的抗干扰能力.  相似文献   

3.
用1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)疏水性离子液体修饰玻碳电极,在0.2 mol/L磷酸盐缓冲溶液(pH为4.0~8.0)中,运用循环伏安法(CV)和差示脉冲溶出伏安法(DPSV)研究了木犀草素在修饰电极上的电化学行为,建立了测定木犀草素含量的新方法。 实验结果表明,该修饰电极上木犀草素氧化、还原峰电位均负移,峰电流增大。 在-0.2~0.7 V电位区间,pH=7.0的磷酸盐缓冲溶液体系中,木犀草素在修饰电极表面发生的是受吸附控制的准可逆等电子等质子电极反应,电子转移系数α=0.5,吸附量为4.6×10-10 mol/cm2;木犀草素氧化峰电流与其浓度在1.0×10-10~1.6×10-8 mol/L范围内呈良好的线性关系,检出限达到3.2×10-11 mol/L,回收率为98.7%~102.0%;该法操作简单、快速、灵敏、准确;可用于野菊花中类黄酮的测定。  相似文献   

4.
制备了碳纳米管-离子液体糊修饰电极并用电化学方法对其进行了表征,研究对乙酰氨基酚在碳纳米管-离子液体糊修饰电极上的电化学行为,建立了以碳纳米管-离子液体糊修饰电极测定对乙酰氨基酚(APAP)的灵敏的电化学方法.在优化的实验条件下,对乙酰氨基酚的氧化峰电流与其浓度在1.0×10-7~1.0×10-6 mol/L和1.0×...  相似文献   

5.
以原位铋修饰掺硼金刚石电极为工作电极,利用方波脉冲阳极溶出伏安法对重金属镉离子进行检测.考察了扫描方式、铋离子浓度、电极硼掺杂浓度、支持电解液p H值、富集电位、脉冲参数和富集时间等因素对镉溶出峰电流的影响并进行了优化.结果表明,原位铋修饰能有效提高检测的灵敏度,镉离子浓度与溶出峰电流值在1~10μg/L范围内呈线性关系,相关系数为0.9979,检出限为0.15μg/L.干扰实验结果表明,相邻溶出电位干扰离子铅和锌对镉的检测影响相对较小,而铜有较大干扰.实际水样测试结果表明,回收率在96%~107%之间.  相似文献   

6.
本文利用离子液体(IL)和普鲁士蓝(PB)纳米方块的协同作用测定鸟嘌呤。首先制备了IL-PB修饰电极,用循环伏安法对修饰电极进行了表征。为了使PB自身的信号达到最大,优化了各种制备条件,如IL和PB的比例,KCl溶液和HCl的浓度等。使用制备的修饰电极催化鸟嘌呤,优化了鸟嘌呤的测定条件如B-R缓冲溶液pH值;疏水性离子液体和亲水性离子液体对鸟嘌呤的影响,结果表明疏水性离子液体催化效果更好。该法在最优化条件下检测鸟嘌呤,在4.0×10-7~1.4×10-6 mol/L范围内与氧化峰电流呈现良好的线性关系,检出限为6.0×10-8 mol/L。  相似文献   

7.
过循环伏安制备了聚对羟基苯甲酸修饰的玻碳电极。考察了该电极对抗坏血酸的电催化性能。结果显示,聚对羟基苯甲酸修饰玻碳电极对抗坏血酸有很好的电催化作用。在修饰后的电极上产生的峰电流比修饰前的电极产生的峰电流大4倍,氧化峰电位负移189 mV。其氧化峰电流与抗坏血酸浓度在2.6×10-5~3.68 ×10-4mol/L范围内呈线性关系,相关性系数为0.9984,检测限为5×10-6 mol/L(S /N = 3)。在AA与UA共存的体系中,能排除多巴胺对抗坏血酸测定的干扰。  相似文献   

8.
本文研究了金纳米颗粒@碳微球(Au@CMSs)的制备及水环境中汞离子在该材料上的电化学行为. 实验结果表明,在0.1mol•L-1 pH = 5.0的NaAc-HAc缓冲溶液中,采用方波伏安法测定汞离子,其浓度与氧化峰电流强度线性良好,相关系数为0.997,检出限为3.69 × 10-8 mol•L-1(3σ方法).  相似文献   

9.
用Nafion和亲水性离子液体溴化1-辛基-3-甲基咪唑([OMIM]Br)作修饰剂制作了Nafion-离子液体-修饰碳糊电极;在0.1 mol/L磷酸盐缓冲溶液(pH 7.40)中,用循环伏安法(CV)和方波伏安法(SWV)研究了多巴胺在该修饰电极上的电化学行为,建立了抗坏血酸和尿酸存在下选择性测定多巴胺的新方法.研究表明,该修饰电极降低了多巴胺氧化、还原反应的过电位,增大了其氧化、还原反应的峰电流,而抗坏血酸和尿酸在该修饰电极上无响应;在方波伏安曲线上,多巴胺的氧化电流与其浓度在3.0×10-8~2.0×10-6 mol/L范围内呈线性关系,检出限为1.0×10-8 mol/L.该法可用于注射液和模拟生物样品中多巴胺的测定.  相似文献   

10.
氮掺杂碳纳米管修饰电极的电化学行为   总被引:1,自引:0,他引:1  
董俊萍  曲晓敏  王利军  王田霖 《化学学报》2007,65(21):2405-2410
制备了氮掺杂改性的碳纳米管, 并用循环伏安法(CV)测定了多巴胺(DA)和抗坏血酸(AA)在不同氮含量的碳纳米管修饰电极上的电化学行为. 结果表明, 氮掺杂碳纳米管修饰电极对AA和DA有不同的电催化行为, 其中高氮含量修饰电极对AA的催化作用强, 而低氮含量修饰电极对DA的催化作用强. 微分脉冲伏安法(DPV)的结果显示, DA的氧化峰电流与其浓度在5.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系, 检出限达1.64×10-6 mol/L (S/N=3); AA氧化峰电流与其浓度在3.0×10-5~1.0×10-2 mol/L范围内呈良好的线性关系, 检出限达3.26×10-6 mol/L (S/N=3). 该修饰电极在AA大量存在(AA浓度为DA浓度两万倍)时可选择性地实现多巴胺的测定而不造成干扰.  相似文献   

11.
In this paper 8‐hydroxyquinoline (HQ) and ionic liquid (IL) modified carbon paste electrode was fabricated and used for the sensitive determination of cadmium(II) with differential pulse anodic stripping voltammetry (DPASV). The modified electrode was prepared by the addition of HQ and IL 1‐ethyl‐3‐methylimidazoliam ethylsulphate as the modifiers into the traditional carbon paste mixture. Cd(II) was preconcentrated and reduced on the surface of the modified electrode at the potential of ‐1.0 V (vs. SCE) by the co‐contributions from the formation of HQ‐Cd(II) complex and the accumulation effect of IL. Then the reduced Cd on the electrode surface was reoxidized by DPASV with a sensitive oxidation peak appeared at ‐0.79 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the Cd(II) concentration in the range from 0.03 to 2.0 mol/L with the detection limit as 5.0 nmol/L (3σ). The proposed method was successfully applied to the water samples detection with the recovery in the range from 95.6% to 96.6%.  相似文献   

12.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

13.
A simple method for the determination of trace cadmium (Cd) (II), using a disposable 1-(2-pyridylazo)-2-naphthol [PAN]-Nafion®-coated glassy carbon electrode, has been developed. The modified electrode exhibited a significant improvement on both sensitivity and selectivity for Cd (II) determination, compared with a bare glassy carbon electrode (GCE), a PAN-coated GCE (PAN-GCE), and a Nafion®-coated GCE (Nafion® GCE). Differential pulse anodic stripping voltammetry (DPASV) was performed, in 0.05?M potassium hydrogen phthalate (KHP) buffer medium, after Cd (II) ion accumulation. The Cd(II) ion accumulated on the PAN-Nafion® surface of the glassy carbon working electrode through the formation of a chemical complex at an open circuit. The modified GCE with Cd (II) complex was then transferred to a 0.1?M KI solution and subjected to an electrochemical stripping procedure. Cyclic voltammetry (CV) was employed to confirm the successful stepwise assembly procedure for the modified electrode. The structure of PAN-Nafion® on the surface-modified electrode was characterised by scanning electron microscopy (SEM). System variables were optimised to yield the most suitable conditions, including the pH and concentration of the accumulation medium, deposition potential, deposition time, and amount of coated PAN-Nafion®. The quantitative analysis of contaminated cadmium in phosphate fertiliser samples was performed. The results obtained from the proposed method agree well with those obtained by inductively coupled plasma-optical emission spectrophotometry (ICP-OES).  相似文献   

14.
《Analytical letters》2012,45(7):1267-1278
Abstract

In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE. Well-defined sharp stripping peaks were observed in the determination of Pb(II) and Cd(II) simultaneously on this electrode. Under optimized conditions, the lowest detectable concentrations were 50 ng/l for Pb(II) and 80 ng/l for Cd(II) under a 10 min preconcentration. The attractive performances of MWNT-Nafion-bismuth modified GCE demonstrated its application for a simple, rapid, and harmless determination of trace heavy metals.  相似文献   

15.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

16.
The preparation of Hg(II)-modified multi walled carbon nanotube (MWCNT) by reaction of oxidized MWCNT with aqueous HgCl2 was carried out. The Hg(II)-modified multi walled carbon nanotube (Hg(II)/MWCNT) dispersed in Nafion solution was used to coat the polished graphite electrode surface. The Hg(II)/MWCNT modified graphite electrode was held at a cathodic potential (−1.0 V) to reduce the coordinated Hg(II) to Hg forming nanodroplets of Hg. The modified electrode was characterized by FESEM/EDAX which provided useful insights on the morphology of the electrode. The SEM images showed droplets of Hg in the size of around 260 nm uniformly distributed on the MWCNT. Differential pulse anodic stripping voltammetry (DPASV) and electrochemical impedance spectroscopy were used to study the Hg(II) binding with MWCNT. Differential pulse anodic stripping voltammetry of ppb levels of cadmium and lead using the modified electrode yielded well-defined peaks with low background current under a short deposition time. Detection limit of 0.94 and 1.8 ng L−1 were obtained following a 3 min deposition for Pb(II) and Cd(II), respectively. Various experimental parameters were characterized and optimized. High reproducibility was observed from the RSD values for 20 repetitive measurements of Pb(II) and Cd(II) (1.7 and 1.9%, respectively). The determination of Pb(II) and Cd(II) in tap water and Pb(II) in human hair samples was carried out. The above method of fabrication of Hg(II)/MWCNT modified graphite electrode clearly suggests a safe route for preparing Hg immobilized electrode for stripping analysis.  相似文献   

17.
A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L−1. With an accumulation period of 120 s detection limits of 0.09 ng mL−1, 0.06 ng L−1 and 0.08 ng L−1 were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

18.
重金属铅和镉元素在环境中普遍存在并可长期蓄积,是不可降解的环境污染物,常危害人体健康.建立快速准确的测定方法具有实际意义[1].  相似文献   

19.
An 1-(pyridylazo)-2-naphthol modified glassy carbon electrode has been investigated as sensor for the measurement of trace levels of Cd2+. Cd2+ is deposited on the surface of a PAN modified glassy carbon electrode at -1.10 V (vs. SCE) via forming Cd2+-PAN and subsequent reduction at the electrode. In the following step, Cd-PAN is oxidized, and voltammograms are recorded by scanning the potential in a positive direction. Calibration plots were found to be linear in the range 2 x 10(-8) mol/L to 8 x 10(-7) mol/L. The detection limit was 5 x 10(-10) mol/L, and the coefficient of variation, determined on one single electrode at a concentration of 5 x 10(-7) mol/L, was calculated to be 3.2% (n = 5). Using this new kind of modified electrode, trace levels of Cd(II) in water samples were determined; the average recovery was calculated to be 98.78%.  相似文献   

20.
A sensitive and efficient electroanalytical method for trace determination of cadmium(II) was developed using hybrid material-modified carbon paste electrodes. The hybrid materials were obtained by modifying the commercial bentonite (BC) and locally collected clay (LC) using the hexadecyltrimethylammonium bromide (HDTMA) as to obtain the organo-modified clay samples (BH and LCH). Moreover, the local clay was pillared with aluminium and modified with the HDTMA (LCAH). The carbon paste electrode was modified with the BC/BCH/LC/LCH/LCAH hybrid materials. Cyclic voltammetric analytical data showed that the modified electrodes were possessed a characteristic reversible behaviour of Cd(II) in aqueous media. Moreover, a significant increase in cathodic or anodic current was obtained using the modified electrodes, BCH, LCH and LCAH. The electroactive surface area of modified electrodes was increased significantly compared to the pristine clay-modified carbon paste electrodes. The response of the modified electrode was not affected significantly varying the pH within the pH region 2.0–10.0. Fairly, a good linearity between the anodic current and concentration of Cd(II) (5.0–40 μg/L) was achieved using the modified electrodes (BCH, LCH and LCAH). The presence of different cations and anions as coexisting ions were studied in order to simulate the real water matrix measurements. Additionally, the real matrix analysis was simulated using the Cd(II) spiked tap water, which showed a good linearity between the concentration of Cd(II) and anodic current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号