首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled monolayers (SAMs) formed from didodecyl diselenide (C12SeSeC12) and didodecyl selenide (C12SeC12) on (111) Au and Ag substrates were extensively characterized by several complementary techniques. C12SeSeC12 was found to form contamination-free, densely packed, and well-ordered C12Se SAMs on both substrates, whereas the adsorption of C12SeC12 occurred only on Au and resulted in the formation of a SAM-like C12SeC12 film with a low packing density and a conformational disorder. The properties of the C12Se SAMs were compared with those of dodecanethiolate (C12S) SAMs. The packing density, orientational order, and molecular inclination in C12Se/Au and C12S/Au were found to be very similar. In contrast, C12Se/Ag exhibited significantly lower packing density, a lower degree of the conformational and orientational order, and a larger molecular inclination than C12S/Ag. The results suggest a sp3 bonding configuration for the selenium atom on Au and Ag and indicate a larger corrugation of the headgroup-substrate binding energy surface in C12Se/Ag than in C12S/Ag.  相似文献   

2.
By using laser-induced heating, we prepared Au-Ag nanoalloys via three different procedures: (i) mixture of Au nanoparticles and Ag(+) ions irradiated by a 532 nm laser, (ii) mixture of Au and Ag nanoparticles irradiated by a 532 nm laser, and (iii) mixture of Au and Ag nanoparticles irradiated by a 355 nm laser. Procedure i is advantageous for the production of spherical alloy nanoparticles; in procedures ii and iii, nanoalloys with a sintered structure have been obtained. The morphology of the obtained nanoalloys depends not only on the laser wavelength but also on the concentration of nanoparticles in the initial mixture. When the total concentration of Ag and Au nanoparticles in the mixture is increased, large-scale interlinked networks have been observed upon laser irradiation. It is expected that this selective heating strategy can be extended to prepare other bi- or multi-metallic nanoalloys.  相似文献   

3.
Soft X-ray absorption microscopy was applied to image and characterize molecular patterns produced by electron irradiation of aliphatic and aromatic thiol-derived self-assembled monolayers (SAMs) on Au substrates. The measurements were performed at all relevant absorption edges. The fabricated patterns could be clearly imaged with a lateral resolution better than 150 nm, which, for example, allowed us to distinguish a fine structure of 1 microm features. The X-ray absorption microspot spectra derived from different areas of the SAM patterns provided specific chemical information on pristine and irradiated areas and unexpected features in these patterns. The quality of the microspot spectra is comparable with that of the analogous X-ray absorption spectra acquired with standard equipment from homogeneous SAMs. In particular, a chemical transformation of the functional tail groups within the irradiated areas of the patterned aromatic SAMs could be directly monitored.  相似文献   

4.
When fluorescently tagged oligonucleotides are located near metal surfaces, their emission intensity is impacted by both electromagnetic effects (i.e., quenching and/or enhancement of emission) and the structure of the nucleic acids (e.g., random coil, hairpin, or duplex). We present experiments exploring the effect of label position and secondary structure in oligonucleotide probes as a function of hybridization buffer, which impacts the percentage of double-stranded probes on the surface after exposure to complementary DNA. Nanowires containing identifiable patterns of Au and Ag segments were used as the metal substrates in this work, which enabled us to directly compare different dye positions in a single multiplexed experiment and differences in emission for probes attached to the two metals. The observed metal-dye separation dependence for unstructured surface-bound oligonucleotides is highly sensitive to hybridization efficiency, due to substantial changes in DNA extension from the surface upon hybridization. In contrast, fluorophore labeled oligonucleotides designed to form hairpin secondary structures analogous to solution-phase molecular beacon probes are relatively insensitive to hybridization efficiency, since the folded form is quenched and therefore does not appreciably impact the observed distance-dependence of the response. Differences in fluorescence patterning on Au and Ag were noted as a function of not only chromophore identity but also metal-dye separation. For example, emission intensity for TAMRA-labeled oligonucleotides changed from brighter on Ag for 24-base probes to brighter on Au for 48-base probes. We also observed fluorescence enhancement at the ends of nanowires and at surface defects where heightened electromagnetic fields affect the fluorescence.  相似文献   

5.
Self-assembled monolayers (SAMs) formed from bis(biphenyl-4-yl) diselenide (BBPDSe) on Au(111) and Ag(111) substrates have been characterized by high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared reflection absorption spectroscopy, water contact angle measurements, and scanning tunneling microscopy (STM). BBPDSe was found to form contamination-free, densely packed, and well-ordered biphenyl selenolate (BPSe) SAMs on both Au and Ag. Spectroscopic data suggest very similar packing density, orientational order, and molecular inclination in BPSe/Au and BPSe/Ag. STM data give a similar intermolecular spacing of 5.3 +/- 0.4 A on both Au and Ag but exhibit differences in the exact arrangement of the BPSe molecules on these two substrates, with the (2 square root[3] x square root[3])R30 degrees and (square root[3] x square root[3])R30 degrees unit cells on Au and Ag, respectively. There is strong evidence for adsorbate-mediated substrate restructuring in the case of Au, whereas no clear statement on this issue can be made in the case of Ag. The film quality of the BPSe SAMs is superior to their thiol analogues, which is presumably related to a better ability of the selenolates to adjust the surface lattice of the substrate to the most favorable 2D arrangement of the adsorbate molecules. This suggests that aromatic selenolates represent an attractive alternative to the respective thiols.  相似文献   

6.
In order to study the adsorption mechanism of Hg on Au and Ag substrates, thin film Au(111) and Ag(111) substrates were exposed to gaseous metallic mercury, while the mercury concentration, substrate temperature, and exposure length were varied. The resulting changes in the surface morphology of the substrates were studied with scanning tunneling microscopy (STM). The amount of adsorbed Hg required to cause saturation, i.e. a decrease in the adsorption rate was found to be dependent on the mercury concentration and substrate temperature. The observations lead to the conclusion that the adsorption includes place exchange processes and concerted adsorption of more than one Hg atom in one process. The results show that the collection efficiency of single-crystalline surfaces is a function of both mercury concentration and temperature. Therefore, results from measurements performed at different conditions using single-crystalline surfaces may not be comparable. Received: 3 February 1999 / Revised: 7 June 1999 / Accepted: 9 June 1999  相似文献   

7.
Through monitoring the evolution of the X-ray diffraction peaks, the phase transformation of PVP-protected Ag and Au nanoparticle deposits (NPDs) on electronic substrates of Cu and Ni upon heating in air was investigated via in situ synchrotron radiation X-ray diffraction. With an increasing temperature, the broad diffraction peak of nano-sized Ag and Au particles with the original average diameters of 4.2 nm and 9.6 nm, respectively, became sharp because of particle coarsening and coalescence. Complex phase transitions among Au, Cu, AuCu(3) and CuO(x) were observed, mainly due to the negative enthalpy of mixing between Au and Cu. The interactions between NPDs and the substrates affected the shift of diffraction peaks to lower angles, caused by thermal expansion and also the temperature for the oxide formation. Compared to Au, Ag NPDs did not form intermetallic compounds with Cu and the formation of copper oxides can also be retarded mainly due to the phase separation feature of the Ag-Cu system.  相似文献   

8.
The detection of bacterial spores requires the capability of highly sensitive and biocompatible probes. This report describes the findings of an investigation of surface-enhanced Raman spectroscopic (SERS) detection of Bacillus subtilis spores using gold-nanoparticle (Au NP) based substrates as the spectroscopic probe. The SERS substrates are shown to be highly sensitive for the detection of B. subtilis spores, which release calcium dipicolinate (CaDPA) as a biomarker. The SERS bands of CaDPA released from the spores by extraction using nitric acid provide the diagnostic signal for the detection, exhibiting a limit of detection (LOD) of 1.5×10(9) spores L(-1) (or 2.5×10(-14) M). The LOD for the Au NP based substrates is quite comparable with that reported for Ag nanoparticle based substrates for the detection of spores, though the surface adsorption equilibrium constant is found to be smaller by a factor of 1-2 orders of magnitude than the Ag nanoparticle based substrates. The results have also revealed the viability of SERS detection of CaDPA released from the spores under ambient conditions without extraction using any reagents, showing a significant reduction of the diagnostic peak width for the detection. These findings have demonstrated the viability of Au NP based SERS substrates for direct use with high resolution and sensitivity as a biocompatible probe for the detection of bacterial spores.  相似文献   

9.
Silver‐Gold alloy/diamond like carbon (Ag‐Au/DLC) nanocomposite films were prepared by co‐deposition of RF‐sputtering and RF‐PECVD on glass substrates by using acetylene gas and silver‐gold target. The deposition process was carried out at room temperature in one minute with the variable parameters of initial pressures and RF powers. X‐ray diffraction analysis demonstrated the formation of Ag/Au alloy nanoparticles with a face‐centered cubic (FCC) structure. Localized surface plasmon and optical properties of Ag‐Au alloy nanoparticles were studied by UV‐visible spectrophotometry which showed that increasing RF power and initial pressure cause a redshift in all samples. Moreover, the effect of RF power and initial pressure on the size and shape of nanoparticles were studied by 2D Atomic force microscopy images. Energy dispersive X‐ray spectroscopy revealed the formation of Ag‐Au/DLC nanoparticles and the percentages of C, Ag, Au and O in all samples. The applied method for Ag/Au alloy preparation is the one step and low‐cost method which makes the samples ready for sensing application.  相似文献   

10.
利用反相乳液分散-化学交联法制备磁性壳聚糖微球(TMCS),并经硫脲改性,用于吸附水溶液中Au3 和Ag 。用光学显微图、红外图谱(FTIR)、X射线衍射(XRD)等对吸附剂进行了表征。考察了TMCS对Au3 和Ag 的吸附特性。结果表明,等温吸附线可用Langmuir模型拟合,饱和吸附容量分别为:Au3 3.53mmol/g;Ag 1.98mmol/g。二者的吸附容量均随pH升高而增加。吸附动力学可用拟二级模型拟合。双组分吸附实验表明,TMCS对Au3 和Ag 有良好的吸附选择性。  相似文献   

11.
黄洁  姚建林  顾仁敖 《化学学报》2007,65(22):2505-2509
采用自组装技术在硅基底上进行金银纳米粒子的混合组装, 通过控制组装溶液中金银溶胶的体积比而控制基底上金银纳米粒子的密度. SEM结果显示金银呈亚单层均匀分布, 以吡啶为探针分子, 在不同波长的激发光下研究了纯金、银以及混合组装时的SERS效应. 利用金银在不同激发线下增强效应的不同以及探针分子吸附在金银纳米粒子表面主要谱峰相对强度差别的特点, 通过一系列校正以及差谱方法研究了金银共存时SERS效应的变化, 并分离出混合体系中金的增强行为, 结果表明在金银同时组装时吡啶的SERS谱峰特征主要表现为银纳米粒子的行为, 分离出的金SERS光谱特征接近银的行为, 说明金银纳米粒子之间产生了一定的耦合作用.  相似文献   

12.
The adsorption of l-histidine on gold (Au) and silver (Ag) nanoparticle surfaces has been comparatively analyzed by means of surface-enhanced Raman scattering (SERS). The SERS spectra of l-histidine on Ag were found to be quite different from those on Au, indicating dissimilar adsorption structures depending on metal substrates. Most peaks of l-histidine on Ag appeared to be due to coordination via the carboxylate (COO(-)) group with an imidazole ring of fairly upright geometry, whereas on Au it was assumed to adsorb with a rather flat geometry. A density functional theory (DFT) calculation was performed at the level of B3LYP/LANL2DZ to estimate the energetic stability of the binding of the imidazole ring and the carboxylate group of l-histidine with the Ag and Au atoms, respectively. Based on the DFT calculation, the carboxylate group of l-histidine was predicted to bind more favorably to Ag than to Au, and this was in line with our SERS spectral analysis.  相似文献   

13.
Electrochemically prepared Au nanorods were used as seeds for the overgrowth of thin shells of gold, silver, and palladium by using a mild reducing agent, ascorbic acid, in the presence of surfactants at ambient condition. The unique crystal facets of the starting nanorods results in anisotropic crystal overgrowth. The overgrowth rates along different crystallographical directions can be further regulated by adding foreign ions or by using different metal reduction methods. This overgrowth study provides insights on how different metal ions could be reduced preferentially on different Au nanorod surfaces, so that the composition, aspect ratio, shape, and facet of the resulting nanostructures can be rationally tuned. These surfactant-stabilized bimetallic Au(core)M(shell) (M=Au, Ag, Pd) nanorod colloids might serve as better substrates in surface-enhanced Raman spectroscopy as well as exhibiting enhanced catalytic properties.  相似文献   

14.
In this work, we have used the static molecular simulations combined with an interatomic potential derived from the embedded‐atom method to study the adsorption and hetero‐diffusion on the (111) surface of Cu, Ag, and Au adatoms by using LAMMPS code. The investigation is performed for six heterogeneous systems such as Ag/Au(111), Ag/Cu(111), Au/Ag(111), Au/Cu(111), Cu/Ag(111), and Cu/Au(111). First, we have investigated the relaxation trends and the bond lengths of the atoms in the systems. The calculation results show that, the top layer spacing between the first and second layers of the Au(111), Ag(111), and Cu(111) substrates is contracted. This contraction is found to be more important in the Au(111) substrate. On the other hand, the strong reduction of the binding length is found in Au/Cu(111) for the different adsorption sites. In addition, the binding, adsorption, and static activation energies for all studied systems were examined. The results indicated that the binding and adsorption energies reached their maximum values in the Au/Cu(111) and Au/Ag(111) systems, respectively. Moreover, the static activation barriers for hopping diffusion on the (111) surfaces are found to be low compared with those found in the (100) and (110) surfaces. Therefore, our calculations showed that the difference in energy between the hcp and fcc sites on the (111) surfaces is very small. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
PVP-protected Ag(core)/Au(shell) bimetallic nanoparticles of enough small size, i.e., 1.4nm in diameter were synthesized in one-vessel using simultaneous reduction of the corresponding ions with rapid injection of NaBH(4), and characterized by HR-TEM. The Ag(core)/Au(shell) bimetallic nanoparticles show a high and durable catalytic activity for the aerobic glucose oxidation, and the catalyst can be stably kept for more than 2months under ambient conditions. The highest activity (16,890mol-glucoseh(-1)mol-metal(-1)) was observed for the bimetallic nanoparticles with Ag/Au atomic ratio of 2/8, the TOF value of which is several times higher than that of Au nanoparticles with nearly the same particle size. The higher catalytic activity of the prepared bimetallic nanoparticles than the usual Au nanoparticles can be ascribed to: (1) the small average diameter, usually less than 2.0nm, and (2) the electronic charge transfer effect from adjacent Ag atoms and protecting PVP to Au active sites. In contrast, the Ag-Au alloy nanoparticles, synthesized by dropwise addition of NaBH(4) into the starting solution and having the large mean particle size, showed a low catalytic activity.  相似文献   

16.
Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with <5 nm diameter located at the interface of anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.  相似文献   

17.
Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.  相似文献   

18.
Layered core-shell bimetallic silver-gold nanoparticles were prepared by overdeposition of Au over Ag seeds by the seed-growth method using tetrachloroauric acid, with hydroxylamine hydrochloride as the reductant. The effects of pH, reduction rate, and seeding conditions on the morphology and surface plasmon extinction of the bimetallic nanoparticles were investigated. Nanoparticles prepared by a rapid reduction in the neutral ambient and assembled into two-dimensional nanoparticulate films by adsorption of 2,2'-bipyridine were characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, surface-enhanced Raman scattering spectroscopy, and transmission electron microscopy. The results are consistent with Ag core and Ag/Au-alloyed shell composition of the nanoparticles. Evidence of the presence of Ag on the surface of the nanoparticles, of enrichment of the Ag/Au alloy shell by Ag toward or at the nanoparticle surface, and of modification of the nanoparticle surface by adsorbed chlorides is also provided. Reduction of the size of the Ag seeds, alloying of Ag and Au in the shell of the nanoparticles, and modification of their surfaces by adsorbed chlorides are tentatively attributed to positive charging of the nanoparticles during the electrocatalytic overdeposition of Au over Ag seeds.  相似文献   

19.
Bilayered silver/gold films (gold deposited on top of the silver film) were used as substrates for electrochemical surface plasmon resonance spectroscopy (EC-SPR). EC-SPR responses of electrochemical deposition/stripping of copper and redox-induced conformation changes of cytochrome c immobilized onto self-assembled monolayers preformed at these substrates were measured. Influence of the Ag layer thickness and the double-layer capacitance on the EC-SPR behavior was investigated. The results demonstrated that the bilayered Ag/Au metal films produce a sharper SPR dip profile than pure Au films and retain the high chemical stability of Au films. Contrary to the result by the Fresnel calculation that predicts a greater fraction of Ag in the bilayered film should result in a greater signal-to-noise ratio, the EC-SPR sensitivity is dependent on both the Ag/Au thickness ratio and the chemical modification of the surface. Factors affecting the overall SPR sensitivity at the bilayered films, such as the film morphology, potential-induced excess surface charges, and the adsorbate layer were investigated. Forming a compact adsorbate layer at the bilayered film diminishes the effect of potential-induce excess surface charges on the SPR signal and improves the overall EC-SPR sensitivity. For the case of redox-induced conformation changes of cytochrome c, the SPR signal obtained at the bilayered silver/gold film is 2.7 times as high as that at a pure gold film.  相似文献   

20.
Solutions of K[Au(CN)(2)] and K[Ag(CN)(2)] in water and methanol exhibit strong photoluminescence. Aqueous solutions of K[Au(CN)(2)] at ambient temperature exhibit luminescence at concentration levels of > or =10(-2) M, while frozen methanol glasses (77 K) exhibit strong luminescence with concentrations as low as 10(-5) M. The corresponding concentration limits for K[Ag(CN)(2)] solutions are 10(-1) M at ambient temperature and 10(-4) M at 77 K. Systematic variations in concentration, solvent, temperature, and excitation wavelength tune the luminescence energy of both K[Au(CN)(2)] and K[Ag(CN)(2)] solutions by >15 x 10(3) cm(-1) in the UV-visible region. The luminescence bands have been individually assigned to *[Au(CN)(2)(-)](n) and *[Ag(CN)(2)(-)](n) excimers and exciplexes that differ in "n" and geometry. The luminescence of Au(I) compounds is related for the first time to Au-Au bonded excimers and exciplexes similar to those reported earlier for Ag(I) compounds. Fully optimized unrestricted open-shell MP2 calculations for the lowest-energy triplet excited state of staggered [Au(CN)(2)(-)](2) show the formation of a Au-Au sigma single bond (2.66 A) in the triplet excimer, compared to a weaker ground-state aurophilic bond (2.96 A). The corresponding frequency calculations revealed Au-Au Raman-active stretching frequencies at 89.8 and 165.7 cm(-1) associated with the ground state and lowest triplet excited state, respectively. The experimental evidence of the exciplex assignment includes the extremely large Stokes shifts and the structureless feature of the luminescence bands, which suggest very distorted excited states. Extended Hückel (EH) calculations for [M(CN)(2)(-)](n) and *[M(CN)(2)(-)](n) models (M = Au, Ag; n = 2, 3) indicate the formation of M-M bonds in the first excited electronic states. From the average EH values for staggered dimers and trimers, the excited-state Au-Au and Ag-Ag bond energies are predicted to be 104 and 112 kJ/mol, respectively. The corresponding bond energies in the ground state are 32 and 25 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号