首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
We have analysed in detail the effect of silver-content on the optical properties of Ag-photodoped amorphous (As0.33S0.67)100?xTex (with x = 0, 1, 5 and 10 at.%) chalcogenide thin films; the chalcogenide host layers were prepared by vacuum thermal evaporation. Films of composition Agy[(As0.33S0.67)100?xTex]100?y, with y ? 18 at.%, were successfully obtained by successively photodissolving about 20- or 40-nm-thick layers of silver. The optical constants (n, k) have been accurately determined by an improved envelope method [J.M. González-Leal, R. Prieto-Alcón, J.A. Angel, D.A. Minkov, E. Márquez, Appl. Opt. 41 (2002) 7300], based on the two envelope curves of the optical-transmission spectrum, obtained at normal incidence. The dispersion of the refractive index of the Ag-photodoped chalcogenide films is analysed in terms of the Wemple–DiDomenico single-effective-oscillator model: n2(?ω)=1-EoEd/(Eo2-(?ω)2), where Eo is the single-oscillator energy, and Ed the dispersion energy. We found that the refractive index of the Ag-doped samples strongly increases with the Ag-content, whereas the optical band gap, Egopt, decreases also notably. For instance, in the particular case of x = 10 at.%, the largest Te-content, Egopt decreases from 2.17 down to 1.67 eV. It should also be mentioned that, in the case of the undoped samples, when the Te-concentration increases from zero up to 10 at.%, the value of Egopt decreases from 2.49 down to 2.17 eV.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
To be able to use the simple technique of optical emission spectroscopy (OES) for the prediction of the transition of growth from a-Si to nc-Si via the Hα/Si? emission ratio, a regime-dependent correction factor is required to relate the measured Hα/Si? emission ratio to the true flux (to the substrate) ratio of atomic hydrogen to deposited silicon radicals. Through an in-depth study in a very high frequency plasma enhanced chemical vapor deposition process, we obtained that the flux ratio of atomic hydrogen and deposited silicon radicals to the growing surface,ΓH/ΓSi, is related to the emission ratio of Hα and Si?, IradHα/IradSi*, by the relation, RradIradHαIradSi*/ΓHΓSi=a(pd)2/kTgas+b, where the parameters p (pressure), d (inter-electrode distance) and Tgas (gas temperature) are experimentally obtained quantities and Rrad is the ratio of the rate coefficients for radiation of Si? and Hα. We obtained the calibration parameters a and b to be 1.9·10? 21 ± 2·10? 22 Pa m? 1 and 5.5 ± 1.9 respectively which is valid in a broad range of power and pressure settings. With these parameters, it is easy to estimate the flux ratio of atomic hydrogen and silicon species at any deposition condition using the OES data and this will allow accurate prediction of the phase transition. According to simulations in the linear low-pressure regime, the amorphous to nanocrystalline phase transformation occurs at the flux ratio ΓH/ΓSi = 12, which translates, using the factors a and b, to the required emission ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号