首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Journal of Non》2005,351(40-42):3235-3245
The electrical and dielectrical properties of Bi2O3–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 4 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. With increasing Fe(II) ion content from 17% to 34% in the bismuth-free 39.4Fe2O3–59.6P2O5 and 9.8Bi2O3–31.7Fe2O3–58.5P2O5 glasses, the dc conductivity increases. On the other hand, the decrease in dc conductivity for the glasses with 18.9 mol% Bi2O3 is attributed to the decrease in Fe2O3 content from 31.7 to 23.5 mol%, which indicates that the conductivity for these glasses depends on Fe2O3 content. The conductivity for these glasses is independent of the Bi2O3 content and arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electronic conduction. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions. The Raman spectra show that the addition of up to 18.9 mol% of Bi2O3 does not produce any changes in the glass structure which consists predominantly of pyrophosphate units.  相似文献   

2.
《Journal of Non》2005,351(40-42):3246-3258
The effect of Fe2O3 content on electrical conductivity and glass stability against crystallization in the system PbO–Fe2O3–P2O5 has been investigated using Raman, XRD, Mössbauer and impedance spectroscopy. Glasses of the molar composition (43.3  x)PbO–(13.7 + x)Fe2O3–43P2O5 (0  x  30), were prepared by quenching melts in the air. With increasing Fe2O3 content and molar O/P ratio there is corresponding reduction in the length of phosphate units and an increase in the Fe(II) ion concentration, which causes a higher tendency for crystallization. Raman spectra of the glasses show that the interaction between Fe sites, which is essential for electron hopping, strongly depends on the cross-linking of the glass network. The electronic conduction of these glasses depends not only on the Fe(II)/Fetot ratio, but also on easy pathways for electron hopping in a non-disrupted pyrophosphate network. The Raman spectra of crystallized glasses indicate a much lower degree of cross-linking since more non-bridging oxygen atoms are present in the network. Despite the significant increase in the Fe2O3 content and Fe(II) ion concentration, there is a considerable weakening in the interactions between Fe sites in crystalline glasses. The impedance spectra reveal a decrease in conductivity, caused by poorly defined conduction pathways, which are result of the disruption and inhomogeneity of the crystalline phases that are formed during melting.  相似文献   

3.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

4.
In earlier studies on phosphate and tellurite glasses containing vanadium and iron oxides, non-linear variation of physical properties as functions of the ratios of the transition ions (V/V + Fe) were observed. The most striking effect was observed with electrical conductivity, where a 3 orders of magnitude reduction in conductivity was observed at a V/V + Fe ratio of ~ 0.4. The effect was termed Mixed Transition-ion Effect or MTE. In phosphate glasses, however, MTE was not observed when one of the transition ions was manganese. It was concluded that Mn does not contribute to conduction in these glasses. In the present study, we demonstrate a mixed transition ion effect in tellurite glasses containing MnO and Fe2O3 (xFe2O3(0.2 ? x) MnO0.8TeO2 with x varying from 0 to 0.2). A maximum in the property at an intermediate composition (x = 8.5 mol%), was observed in DC resistivity, activation energy, molar volume etc. Mossbauer and optical absorption (UV–VIS–NIR) measurements were performed on these glasses and the transport mechanism has been identified to be hopping of small polarons between Fe3 + (Mn3 +) and Fe2 + (Mn2 +) sites.  相似文献   

5.
《Journal of Non》2006,352(21-22):2100-2108
Electrical and optical properties of phosphate glasses containing vanadium and manganese ions in the xP2O5–[(100  x)(V2O5 + MnO)] (PVM) system have been investigated. This is the last article of a III-part series devoted to the electronic properties of phosphate glasses containing a mixture of transition ions. The first article was devoted to the electrical conductivity of glasses having the general composition: xP2O5–[(100  x)(V2O5 + Fe2O3)] (PVF). Competitive transport of small polarons on V and Fe ion sites was found to contribute to a mixed transition-ion effect (MTE) in PVF glasses. Several features of MTE were found to be similar to the well known mixed alkali effect, observed in glasses containing two alkali ions. In the second article, optical absorption and electronic conduction of xP2O5–[(100  x)(Fe2O3 + MnO)] (PFM) glasses were reported. In the absence of competitive transport between the two transition ions (since Mn ions were determined not to contribute to dc conduction), MTE was not observed. The most important feature of PFM glasses was a sharp increase in resistivity at a critical concentration of iron ions, similar to ‘metal–insulator transition’ (MIT). In the present article, we report a resistivity transition in PVM glasses which is similar to that exhibited by the glasses of the PFM series. While Fe ions contributed the carriers in the PFM glasses, V ions serve the same purpose in the PVM compositions. As the concentration of vanadium ions, nV, is decreased in the composition range 0.82 > nV > 0.40, resistivity (ρ) increases marginally. For glasses with 0.2 < nV < 0.40, resistivity and the activation energy for dc conduction (W) increase sharply with decreasing nV, marking the incidence of an MIT-type transition. As in the PFM glasses, the observation of MIT coincides with the transformation of small polarons to small bipolarons, which is confirmed by the shifting of the small polaron optical absorption band to higher energies with decreasing V concentration.  相似文献   

6.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

7.
《Journal of Non》2006,352(30-31):3326-3331
A series of tellurite glasses containing Fe2O3 with the nominal composition x(Fe2O3)–(1−x)(TeO2), where x = 0.05, 0.10, 0.15, and 0.20, have been synthesized and investigated using X-ray photoelectron spectroscopy (XPS) and magnetization techniques. The Te 3d core level spectra for all glass samples show symmetrical peaks at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in these glasses does not vary significantly with the addition of Fe2O3. Furthermore, the full-width at half-maximum (FWHM) of each peak does not vary with increasing Fe2O3 content which suggests that the Te ions exist in a single configuration, namely TeO4 trigonal bipyramid (tbp). The O 1s spectra are narrow and symmetric for all compositions such that oxygen atoms in the Te–O–Te, Fe–O–Fe and Te–O–Fe configurations must have similar binding energies. The analysis of the Fe 3p spectra indicates the presence of Fe3+ ions only, which is consistent with the valence state of the Fe ions determined from magnetic susceptibility measurements.  相似文献   

8.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

9.
Degradable iron–phosphate glasses with the composition of (CaO)0.30–(Na2O)0.20?x–(Fe2O3)x–(P2O5)0.50, x = 0.01–0.05, were studied by Fe K-edge X-ray absorption spectroscopy (both near-edge, XANES, and extended, EXAFS). The addition of up to 5 mol% iron oxide is known to enhance the durability of the phosphate glass while maintaining biocompatibility. The results from the two techniques used here both show that iron is in the Fe(III) oxidation state and has octahedral coordination. This suggests that Fe is cross-linking the phosphate chains and therefore strengthening the network structure, resulting improved chemical durability of the glasses.  相似文献   

10.
The electrical conductivity and dielectric properties of xB2O3–(40 ? x)Fe2O3–60P2O5 (x = 6–20, mol%) glasses were investigated in the frequency range from 0.01 Hz to 1 MHz and the temperature range from 303 K to 523 K. At temperatures below 523 K an ac conductivity and the dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 523 K this mechanism governs the charge transport in these glasses. The comparison of the values of characteristic coefficients W and α determined by two different methods confirms the polaronic behavior of boron doped iron phosphate glasses.  相似文献   

11.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

12.
Modified iron phosphate glasses have been prepared with nominal molar compositions [(1?x)·(0.6P2O5–0.4Fe2O3)]·xRySO4, where x = 0–0.5 in increments of 0.1 and R = Li, Na, K, Mg, Ca, Ba, or Pb and y = 1 or 2. In most cases the vast majority or all of the sulfate volatalizes and quarternary P2O5–Fe2O3–FeO–RyOz glasses or partially crystalline materials are formed. Here we have characterized the structure, thermal properties, chemical durability and redox state of these materials. Raman spectroscopy indicates that increasing modifier oxide additions result in depolymerization of the phosphate network such that the average value of i, the number of bridging oxygens per –(PO4)– tetrahedron, and expressed as Qi, decreases. Differences have been observed between the structural effects of different modifier types but these are secondary to the amount of modifier added. Alkali additions have little effect on density; slightly increasing Tg and Td; increasing α and Tliq; and promoting bulk crystallization at temperatures of 600–700 °C. Additions of divalent cations increase density, α, Tg, Td, Tliq and promote bulk crystallization at temperatures of 700–800 °C. Overall the addition of divalent cations has a less deleterious effect on glass stability than alkali additions. 57Fe Mössbauer spectroscopy confirms that iron is present as Fe2+ and Fe3+ ions which primarily occupy distorted octahedral sites. This is consistent with accepted structural models for iron phosphate glasses. The iron redox ratio, Fe2+/ΣFe, has a value of 0.13–0.29 for the glasses studied. The base glass exhibits a very low aqueous leach rate when measured by Product Consistency Test B, a standard durability test for nuclear waste glasses. The addition of high quantities of alkali oxide (30–40 mol% R2O) to the base glass increases leach rates, but only to levels comparable with those measured for a commercial soda-lime-silica glass and for a surrogate nuclear waste-loaded borosilicate glass. Divalent cation additions decrease aqueous leach rates and large additions (30–50 mol% RO) provide exceptionally low leach rates that are 2–3 orders of magnitude lower than have been measured for the surrogate waste-loaded borosilicate glass. The P2O5–Fe2O3–FeO–BaO glasses reported here show particular promise as they are ultra-durable, thermally stable, low-melting glasses with a large glass-forming compositional range.  相似文献   

13.
The electrical and dielectric properties of 10ZnO-30Fe2O3-60P2O5 (mol%) glasses, melted at different temperatures were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 3 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe(II)/[Fe(II) + Fe(III)] ratio. With increasing Fe(II) ion content from 17% to 37% in these glasses, the dc conductivity increases. Procedure of scaling conductivity data measured at various temperatures into a single master curve is given. The conductivity of the present glasses is made of conduction and conduction-related polarization of the polaron hopping between Fe(II) and Fe(III), both governed by the same relaxation time, τ. The high frequency dispersion in electrical conductivity arises from the distribution in τ caused by the disordered glass structure. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions.  相似文献   

14.
《Journal of Non》2007,353(18-21):1828-1833
ZnO–B2O3–P2O5 glasses formulated with Sb2O3 were investigated in the series 50ZnO–10B2O3–40P2O5 + xSb2O3 (x = 0–70 mol%). With increasing Sb2O3 content, the values of glass transition temperature decrease from 492 °C down to 394 °C. The dissolution rate of the glasses reveals a maximum for the glass with x = 15 mol% Sb2O3. Raman spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains. Antimony at low Sb2O3 content forms individual SbO3 pyramids manifested in the Raman spectra by a broad vibrational band at ∼520–690 cm−1. In the glasses with a higher Sb2O3 content SbO3 units link into chains and clusters with Sb–O–Sb bridges manifested in the Raman spectra by a strong broad band at 380–520 cm−1. The 31P MAS NMR spectra with increasing Sb2O3 content reflect the depolymerisation of phosphate chains at low Sb2O3 content and only small changes in the PO4 coordination at a high Sb2O3 content. 11B MAS NMR spectra reveal a steady transformation of B(OP)4 units into B(OP)4−x(OSb)x units, accompanied by the transformation of BO4 into BO3 units with increasing Sb2O3 content.  相似文献   

15.
《Journal of Non》2006,352(38-39):4082-4087
Liquids with the base compositions (16  x/2)Na2O · xNaF · 10CaO · 74SiO2 (x = 0, 1, 3, and 4) and (10  x/2) · Na2O · xNaF · 10CaO · yAl2O3 · (80  y)SiO2 (x = 0, 1, 3, 5 and y = 5 and 15) doped with 0.25 mol% Fe2O3 were studied by means of square-wave voltammetry in the temperature range from 1000 to 1500 °C. With increasing temperature, the redox equilibria were shifted to the reduced state. Also while increasing the alumina concentration, the Fe2+/Fe3+-redox equilibrium is shifted to the reduced state. In the soda-lime–silica melt the addition of fluoride shifts the equilibrium to the oxidized state, while in the aluminosilicate melts with 15 mol% Al2O3, the equilibrium is shifted to the reduced state. In the aluminosilicate melts with 5 mol% Al2O3, the equilibrium was not affected by the fluoride concentration. This is explained by the structure of the respective glass compositions.  相似文献   

16.
《Journal of Non》2007,353(24-25):2363-2366
Glasses of the xGd2O3 · (100  x)[B2O3 · Bi2O3] system with 0.5  x  10 mol% were studied by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Data obtained show that for low gadolinium oxide contents of the samples (x  3 mol%) the Gd3+ ions are randomly distributed in the host glass matrix and are present as isolated and dipole–dipole coupled species. For higher gadolinium oxide contents of the samples (x > 3 mol%) the Gd3+ ions appear as both isolated and antiferromagnetically coupled species. The EPR spectra of the glasses reveal resonance sites with an unexpected high crystalline field in addition to the ‘U’ spectrum, typical for Gd3+ ions in disordered systems. This absorption line is due to Gd3+ ions that replace Bi3+ ions from the host glass matrix and could play the network unconventional former role in the studied glasses.  相似文献   

17.
Thermal conductivity of glass is one of the fundamental properties of it. However, that has not been studied enough. That of only less than 20 compositions has been measured below the room temperature. In this study, we measured the thermal conductivity of xNa2O · (100 ? x)SiO2 and (33 ? y)Na2O · yCs2O · 67SiO2 glasses by a transient heating method in the temperature range from about 150 K to room temperature. The conductivity of xNa2O · (100 ? x)SiO2 is found to decrease with the increase in alkali content. The dominant factor of this behavior is the decrease in phonon mean free path, which is due to the increase of non-bridge oxygen. Thermal conductivity of (33 ? y)Cs2O · yNa2O · 67SiO2 is decreased with the increase in Cs2O/(Na2O + Cs2O) ratio. The dominant factor of this behavior is the decrease of sound velocity. However, composition dependence of the phonon mean free path also affects the thermal conductivity. Phonon mean free path of 33Cs2O · 67SiO2 glass is longer than that of 33Na2O · 67SiO2 glass, and should be related to the change in distribution of structural unit in glass. In addition, phonon mean free path of mixed alkali glasses are shorter than that of single alkali glasses.  相似文献   

18.
This work presents a study on the structure, microstructure and properties of 50Li2xB2O3·(50 ? x)P2O5 glasses. The structure has been studied through NMR spectroscopy and the microstructure by TEM. The properties of the glasses are discussed according to their structure and microstructural features. The introduction of boron produces new linkages between phosphate chains through P–O–B bonds, whose amount increases with boron incorporation; at the same time, a depolymerisation of the phosphate chains into Q1-type phosphate units takes place. The introduction of boron produces an increase in Tg together with a decrease in the molar volume. The room temperature electrical conductivity increases with boron content as well. However, B2O3 contents higher than 20 mol% lead to crystallisation of lithium orthophosphate which contributed to hinder ionic conduction of the glasses.  相似文献   

19.
O. Cozar  D.A. Magdas  I. Ardelean 《Journal of Non》2008,354(10-11):1032-1035
The local symmetry and interaction between paramagnetic ions in xMoO3(1 ? x)[2 P2O5PbO] glasses with 0.5 ? x ? 50 mol% are investigated by EPR spectroscopy. For x ? 10 mol% the isolated Mo5+ ions surrounded by five oxygen ligands in a square-pyramidal form (C4v symmetry) prevail. The short range disorder in the environment of Mo5+ ions is not significantly (ΔR/R  2%). At high molybdenum content (x > 20 mol%) the dipole–dipole and superexchange coupled Mo5+ ions appear and their number increases with the MoO3 content. These two aspects are also correlated with the network modifier and former role of molybdenum oxide in function of its concentration. Thus a strong depolymerization of the phosphate structure and the formation of P–O–Mo or Mo–O–Mo bonds in studied glasses appear.  相似文献   

20.
Ryszard J. Barczyński 《Journal of Non》2008,354(35-39):4275-4277
The conductivity of glasses in the 50WO3–(50 ? x)P2O5xA2O (A = Na, K, Cs) system has been investigated as a function of composition. It is shown that in tungstenite–phosphate glasses containing different alkali metal ions the conductivity decreases with an increase in the alkali metal ion content. A decrease in conductivity is larger for heavier ions and reaches more than seven orders of magnitude in the case of glass containing Cs2O. This behavior remains in contrast to the literature data on conductivity in transition metal oxide glasses containing alkali metal ions where usually strong conductivity anomalies of several orders of magnitude at certain amount of ions are observed. No necessity of ion–polaron interaction has been pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号