首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrathin films of ferroelectric copolymer vinylidenefluoride and trifluoroethylene, P(VDF-TrFE), were successfully obtained by spin-coating and their nanoscale structures and electrical properties were studied utilizing atomic force microscopy (AFM). We succeeded in obtaining ultrathin copolymer films on graphite whose thickness ranged from 1 nm to several tens of nanometers by controlling concentration of copolymer solutions in methylethylketone. We found that ultrathin films thinner than 4 nm showed layered structures whose layer thickness was about 0.5 nm. On the other hand, films thicker than 4 nm formed typical edge-on lamellar crystal structures. Furthermore, we investigated surface potential distribution and piezoelectric property by AFM-based techniques and discussed interaction between electrical dipoles in the molecular chains and graphite substrate.  相似文献   

2.
While forming layer-by-layer (LbL) electrostatic assembly of a magnetic organic molecule, namely, nickel phthalocyanine (NiPc), we apply a magnetic field. The field orients the magnetic moment of the molecules on a monolayer along the direction of magnetic field. Such an orientation of the molecules is then electrostatically immobilized with a monolayer of a polycation. By repeating the dipping cycle, we form LbL films with planar NiPc molecules facing a particular direction. With NiPc's moment perpendicular to the molecular plane, two types of LbL films were formed: (a) NiPc's molecular plane parallel to the substrate (moment is perpendicular) and (b) molecules perpendicular to the substrate and facing one particular direction, the direction of magnetic field. Such films, with the molecules lying either (a) parallel or (b) perpendicular to the substrate, provide unique systems to study anisotropy of optical, dielectric, and electrical characteristics in these planar organic molecules. The latter film responds to the polarization of incident beam in electronic absorption spectroscopy. Here we show methods to obtain an orientation of molecules in LbL films and study anisotropy of dielectric constant and conductivity of the molecules in ultrathin films.  相似文献   

3.
We describe a Kelvin Probe Force Microscopy (KPFM) study on the morphological and electronic properties of complex mono and bi-molecular ultrathin films self-assembled on mica. These architectures are made up from an electron-donor (D), a synthetic all-benzenoid polycyclic aromatic hydrocarbon, and an electron-acceptor (A), perylene-bis-dicarboximide. The former molecule self-assembles into fibers in single component films, while the latter molecule forms discontinuous layers. Taking advantage of the different solubility and self-organizing properties of the A and D molecules, multicomponent ultrathin films characterized by nanoscale phase segregated fibers of D embedded in a discontinuous layer of A are formed. The direct estimation of the surface potential, and consequently the local workfunction from KPFM images allow a comparison of the local electronic properties of the blend with those of the monocomponent films. A change in the average workfunction values of the A and D nanostructures in the blend occurs which is primarily caused by the intimate contact between the two components and the molecular order within the nanostructure self-assembled at the surface. Additional roles can be ascribed to the molecular packing density, to the presence of defects in the film, to the different conformation of the aliphatic peripheral chains that might cover the conjugated core and to the long-range nature of the electrostatic interactions employed to map the surface by KPFM limiting the spatial and potential resolution. The local workfunction studies of heterojunctions can be of help to tune the electronic properties of active multicomponent films, which is crucial for the fabrication of efficient organic electronic devices as solar cells.  相似文献   

4.
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly-(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone. With the silicon backbones perpendicular or parallel to the surface of the substrate, the UV absorbance increased or decreased with an increase of the angle between the incident UV beam direction and direction normal to the thin film, respectively.  相似文献   

5.
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.  相似文献   

6.
本文控制合成一维方向生长的直径为1.5 nm,长度为11.8 nm的超细Pd纳米线,结合欠电位沉积方法在其表面制备了不同Pt原子层的Pd@Pt核壳结构纳米电催化剂. 高分辨透射电镜和光电子能谱结果证实了这种核壳结构及Pt在Pd纳米线上的均匀分布. 相比于商业化Pt黑催化剂,该核壳结构电催化剂对酸性介质中的氧气还原反应呈现了较高的电催化活性和增强的耐久性. 显著增强的耐久性可归属于催化剂一维结构的稳定性.  相似文献   

7.
In this review, we summarize recent progress in experimental approaches to the investigation of the unoccupied electronic structures of organic ultrathin films, based on a combination of spectroscopic and microscopic techniques. At the molecule/substrate interface, electronic structures are greatly affected by the geometrical structures of adsorbed molecules. In addition, a delicate balance between substrate-molecule and intermolecular interactions plays an important role in the formation of complex polymorphism. In this context, we have clarified the correlation between geometric and electronic structures using a combination of two-photon photoemission (2PPE) spectroscopy, low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Organic ultrathin films of metal phthalocyanines and polycyclic aromatic hydrocarbons (naphthalene, rubrene and perylene) on graphite substrates were examined as model systems. Depending on the substrate temperature and coverage, unique morphologies, including well-ordered films, a metastable phase and a two-dimensional gas-like phase, were determined at the molecular level. The data show that variations in molecular orientation have a significant impact on the occupied/unoccupied electronic structures. In addition to static information regarding electronic states, ultrafast electron excitation and relaxation dynamics can be tracked in real time on the femtosecond scale by time-resolved 2PPE spectroscopy. The excited electron dynamics of rubrene films are discussed herein, taking into account structural information, in the presence and absence of an overlap of the wave function with the substrate. Spatial resolution at the molecular level is also obtainable via STM-based local spectroscopy and mapping, which have been utilized to elucidate the spatial extent of unoccupied orbitals in real space. Visible photon emissions from the unoccupied states of perylene monolayer films were observed using 2PPE, representing a characteristic deexcitation process from electronically excited states, depending on the surface structure. These spectroscopic and molecular level microscopic investigations provide fundamental insights into the electronic properties of organic/substrate interfaces.  相似文献   

8.
Cobalt nanowires were obtained in the process of electrodeposition into pores of an alumina membrane. Structural research (XRD, TEM) of Co revealed the face-centered cubic structure. However, the existence of the hexagonal structure cannot be excluded due to strong texture. The influences of an external magnetic field and Al2O3 membrane geometry on magnetic properties of obtained wires were examined. It was found that cobalt nanowires exhibit pronounced shape anisotropy in a direction parallel to the wire axis. The highest influence on the magnetic properties is ascribed to the nanowires geometry i.e., height, diameter, and distances between single wires. Application of an external magnetic field in a perpendicular direction to the sample surface during cobalt electrodeposition increases magnetic anisotropy with a privileged direction along the wire axis. Application of the magnetic field in a parallel direction to the sample surface changes the direction of magnetization.  相似文献   

9.
The results of studies of polyimide and fluoropolymer films after a prolonged exposure at the Mir orbital space station are reported. The weight loss of external polyimide films was ~40–60%; the weight of FEP-100A fluoropolymer films remained unchanged, and the weight of F-4MB films increased by ~50%. The external and internal surfaces of polyimide films were hydrophilized. The external surface of a polyimide film acquired anisotropic properties, which manifested themselves as the shape anisotropy of liquid drops, the surface tension and the work of adhesion, the light scattering circular diagrams, and in the formation of spatially oriented fractal structures. The appearance of anisotropic properties is a consequence of the arrangement of a film on the station surface at an angle to the flow of atomic oxygen. The possible reactions of fast and scattered oxygen atoms, which are responsible for the chemical and structural transformations of polyimide, are discussed.  相似文献   

10.
氧化物单晶化薄膜的制备与表征是研究氧化物表面性质的重要方法,也是模型催化研究的前沿领域。本文主要综述了Fritz-Haber研究所的Hajo Freund小组在过去几年间围绕着以Mo(001)为衬底制备的CaO(001)薄膜模型催化体系而进行的表面结构和化学性质的系列研究。其中既包含了氧化物薄膜研究的共同特点,如界面效应、膜厚效应等,也包含有CaO/Mo体系独特的性质,如Mo的自发掺杂对表面性质的调控作用。在该系列研究中低温扫描隧道显微镜(LT-STM)技术的应用贯穿了方方面面,从原子结构表征到电子性质研究,从杂质缺陷的鉴别到表面物种荷电性质的分析等。STM所获得的微观信息直接从原子分子水平揭示了调控薄膜表面性质的各种控因。特别的,在理论计算的辅助下,不断深化认识氧化物掺杂调控的原理和机制,为设计新型催化剂提供重要思路。  相似文献   

11.
Faceting is a form of self-assembly at the nanometre-scale on adsorbate-covered single-crystal surfaces, occurring when an initially planar surface converts to a "hill and valley" structure, exposing new crystal faces of nanometre-scale dimensions. Planar metal surfaces that are rough on the atomic scale, such as bcc W(111), fcc Ir(210) and hcp Re(1231), are morphologically unstable when covered by monolayer films of oxygen, or by certain other gases or metals, becoming "nanotextured" when heated to temperatures above approximately 700 K. Faceting is driven by surface thermodynamics (anisotropy of surface free energy) but controlled by kinetics (diffusion, nucleation). Surfaces can spontaneously rearrange to minimize their total surface energy (by developing facets), even if this involves an increase in surface area. In this critical review, we discuss the structural and electronic properties of such surfaces, and first principles calculations are compared with experimental observations. The utility of faceted surfaces in studies of structure sensitive reactions (e.g., CO oxidation, ammonia decomposition) and as templates for growth of metallic nanostructures is explored (122 references).  相似文献   

12.
The method for prediction of structural properties of ultrathin liquid layers has been developed on the base of the atomistic molecular dynamics (AMD) and the density functional theory (DFT). A comparative analysis of ultrathin dichloromethane layer density profiles on three types of solid flat substrates showed that these approaches can be effectively used as mutually complementary procedures to describe the structural properties of nanometer scale surface layers. We used AMD calculations to predict the dichloromethane layer density profile on a solid substrate. However, it is difficult and computationally expensive to calculate structural and thermodynamic layers properties. At the same time, DFT can retain the microscopic details of macroscopic systems at the calculative cost significantly lower than that used in AMD. Therefore, in context of DFT, the substrate potential parameters are adjusted to reproduce AMD data. Thus, the obtained potential allows us to compute structural characteristics and, further, can be used to predict other physical properties of ultrathin films within the DFT framework. For instance, we calculated the coefficient of thermal expansion of dichloromethane in the case of three different substrates such as graphite, silicon oxide, and gold.  相似文献   

13.
We have prepared ultrathin, nanostructured melanin films on Au(111) by means of electrochemical self-assembly. These films were characterized by using Auger electron spectroscopy, X-ray absorption near-edge structure spectroscopy, scanning tunneling microscopy, magnetic force microscopy, and electrochemical techniques. Two types of nanostructures are present in the film: melanin nanoparticles and Fe(3)O(4) nanoparticles. The melanin nanoparticles contain Fe bonded to oxygen-containing phenolic groups in an octahedral configuration similar to that found in Fe(2)O(3). The inorganic-organic composite exhibits magnetic properties and catalyzes the electroreduction of hydrogen peroxide in alkaline and neutral electrolyte solutions. The electrocatalytic activity depends on the Fe-bound melanin and appears to be similar to that found for Fe-porphyrins.  相似文献   

14.
Molecular dynamics simulation with an experimental work was performed on the TiO2 nanostructure film. The Morse potential function was used for the interatomic interactions. Then, the equations of motion for molecules and atoms are solved by Verlet algorithm. The effects of deposition rate and the number of TiO2 molecules were studied for morphology characterization of film surface. In addition, TiO2 nanostructure film was prepared experimentally with the sol–gel dip-coating method. The results of MD simulations provide a reasonable compatibility with Dektak surface profiler, atomic force microscopy (AFM) and scanning electron microscopy (SEM) images due to the morphology and surface structure of films.  相似文献   

15.
Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 +/- 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications.  相似文献   

16.
Ultrathin multilayers are important for electrical and optical devices, as well as for immunoassays, artificial organs, and for controlling surface properties. The construction of ultrathin multilayer films by electrostatic layer-by-layer deposition proved to be a popular and successful method to create films with a range of electrical, optical, and biological properties. Dendrimer nanocomposites (DNCs) form highly uniform hybrid (inorganic-organic) nanoparticles with controlled composition and architecture. In this work, the fabrication, characterization, and optical properties of ultrathin dendrimer/poly(styrene sulfonate) (PSS) and silver-DNC/PSS nanocomposite multilayers using layer-by-layer (LbL) electrostatic assembly techniques are described. UV-vis spectra of the multilayers were found to be a combination of electronic transitions of the surface plasmon peaks, and the regular frequency modulations attributable to the multilayered film structure. The modulations appeared as the consequence of the highly regular and non-intermixed multilayer growth as a function of the resulting structure. A simple model to explain the experimental data is presented. Use of DNCs in multilayers results in abrupt, flat, and uniform interfaces.  相似文献   

17.
We report that ultrathin multilayered films fabricated from plasmid DNA and synthetic polyamines undergo nanometer-scale transformations that resemble spinodal decomposition when incubated in aqueous media. The patterns and structures generated by this transformation are similar to those observed for the spinodal dewetting of thin films of conventional polymers. This behavior has not, however, been observed for this class of multilayered assemblies, for which long-range electrostatic interactions play significant roles in governing film structure and stability. We demonstrate that it is possible to promote this behavior, prevent it, or control it by varying polymer structure, film composition, or the conditions to which these materials are exposed. These results suggest the basis of methods that could prove useful for the generation of nanostructure on complex surfaces and contribute to methods for the localized delivery of DNA from surfaces.  相似文献   

18.
Ordered iron oxide ultrathin films were fabricated on a single-crystal Mo(110) substrate under ultrahigh vacuum conditions by either depositing Fe in ambient oxygen or oxidizing preprepared Fe(110) films. The surface structure and electronic structure of the iron oxide films were investigated by various surface analytical techniques. The results indicate surface structural transformations from metastable FeO(111) and O-terminated Fe(2)O(3)(0001) to Fe(3)O(4)(111) films, respectively. The former depends strongly on the oxygen pressure and substrate temperature, and the latter relies mostly upon the annealing temperature. Our experimental observations are helpful in understanding the mechanisms of surface structural evolution in iron oxides. The model surfaces of Fe-oxide films, particularly O-terminated surfaces, can be used for further investigation in chemical reactions (e.g., in catalysis).  相似文献   

19.
This study presents the characterization and antibacterial activity of nanostructure NiO films synthesized by sol–gel dip coating method using solvents of different polarities and viscosities without any catalysts, templates or surfactants. Methanol, 1,4-butanediol, ethanol, and 2-propanol were used as solvent. The antibacterial activity was tested against two common foodborne pathogenic bacteria Staphylococcus aureus (ATCC 25922) and Escherichia coli (ATCC 29213) using the so-called antibacterial drop test. X-ray diffraction, scanning electron microscopy, atomic force microscopy, UV–vis spectroscopy and static contact angles test were used to analysis the structure and morphology character, surface topography, optical property and surface wettability of different coatings, respectively. The characterization results showed different preferred crystallographic orientations, particle sizes, surface properties and optical band gap of NiO films according to the solvent physicochemical properties. The antibacterial efficiencies were affected by the physiological status of the bacterial cells and degree of bacteria adherence, morphologies and crystal growth habits, surface and optical properties of NiO samples.  相似文献   

20.
Films of soluble collagen extracted from rat‐tail tendon were studied at the solid–solution interface, and the surface energy of the films was evaluated. The films transferred onto solid substrates using the Langmuir–Blodgett film (LB film) technique were characterized using Fourier transform IR attenuated total reflectance spectroscopy and atomic force microscopy. The properties of the protein in contact with different structure modifiers like basic chromium sulfate (BCS) and formaldehyde (HCHO) were analyzed for the effect of various tanning agents on the protein structure. The thermal properties of the films were studied using differential scanning calorimetry. The results show that the film of collagen treated with BCS exhibits an increase in the peak temperature and enthalpy changes compared to the pure collagen as well as the protein with HCHO. These differences are attributed to the changes in the crosslinks arising from both coordinate–covalent and covalent interactions, respectively. The atomic force micrographs showed an increase in order for the collagen film with BCS compared to the HCHO treated analogue. A similar trend is seen in the surface energy parameters of the protein films on solid surfaces on reacting with BCS and HCHO, suggesting a molecular level ordering process in collagen assemblies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3859–3865, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号