首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay for protein kinase C delta (PKCδ) activity based on the quantification of a synthetic substrate using capillary electrophoresis with laser‐induced fluorescence detection was developed. The peptides labeled with fluorescein isothiocyanate F‐ERK (where ERK is extracellular signal‐regulated kinase) and the phosphorylated form, P‐F‐ERK, were utilized for the method development and validation. The migration time of F‐ERK and P‐F‐ERK were 6.3 ± 0.1 and 8.7 ± 0.2 min, respectively. LOD and LOQ values of F‐ERK were 2 and 6 ng/mL and those of P‐F‐ERK were 4 and 12 ng/mL. The correlation coefficients obtained from two standard curves were approximately 0.99. The reproducibility and accuracy of the method for F‐ERK ranged 1.5–4.7 and 86–109%, respectively, and those for P‐F‐ERK were 1.6–6.1 and 93–109%, respectively. The activity of PKCδ was studied in vitro using the human gastric cancer cell line MKN‐1. The use of PKCδ inhibitor candidates, including G?6983, bisindolylmaleimide II, staurosporine, and rottlerin in the assay resulted in IC50 values of 50 nM, 15 nM, 795 nM, and 4 μM, respectively. Comparison of our assay with a commercial PKC kit revealed that our assay is more adaptable to differing enzyme isoforms. This method has potential for high throughput screening for kinase inhibitors as part of a drug discovery program.  相似文献   

2.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

3.
Hydrogen/deuterium exchange measurements by mass spectrometry (HX-MS) can be used to report localized conformational mobility within folded proteins, where exchange predominantly occurs through low energy fluctuations in structure, allowing transient solvent exposure. Changes in conformational mobility may impact protein function, even in cases where structural changes are unobservable. Previous studies of the MAP kinase, ERK2, revealed increases in HX upon activation occured at the hinge between conserved N- and C-terminal domains, which could be ascribed to enhanced backbone flexibility. This implied that kinase activation modulates interdomain closure, and was supported by evidence for two modes of nucleotide binding that were consistent with closed vs open conformations in active vs inactive forms of ERK2, respectively. Thus, phosphorylation of ERK2 releases constraints to interdomain closure, by modulating hinge flexibility. In this study, we examined ERK1, which shares 90% sequence identity with ERK2. HX-MS measurements of ERK1 showed similarities with ERK2 in overall deuteration, consistent with their similar tertiary structures. However, the patterns of HX that were altered upon activation of ERK1 differed from those in ERK2. In particular, alterations in HX at the hinge region upon activation of ERK2 did not occur in ERK1, suggesting that the two enzymes differ with respect to their regulation of hinge mobility and interdomain closure. In agreement, HX-MS measurements of nucleotide binding suggested revealed domain closure in both inactive and active forms of ERK1. We conclude that although ERK1 and ERK2 are closely related with respect to primary sequence and tertiary structure, they utilize distinct mechanisms for controlling enzyme function through interdomain interactions.  相似文献   

4.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.Subject terms: Protein quality control, Ubiquitylation  相似文献   

5.
The goal of the present study is to test the hypothesis that LPA induces proliferation of astrocytes in hippocampus in vivo via phosphorylation of ERK 1/2. We first characterized the expression of GFAP, a special marker fiber protein of astrocytes, in brain slices after direct injection of LPA into hippocampus by immunohistochemistry, and found that LPA induced a remarkable proliferation of astrocytes. Then double-lablled immunofluorescence was used to detect GFAP and phosphorylation ERK 1/2 (p-ERK 1/2), LPA induced an immediate (10 min) and transient (<30 min) phosphorylation of ERK 1/2, and sequence sustained activation of ERK 1/2 was observed, which last for at least 3 weeks after injection of LPA. Reactions are inhibited by U0126, a specific pharmacological mitogen-activated protein kinase (MEK) inhibitor. Laser confocal scanning was used to study spatial relationship of p-ERK and astrocytes. Amazingly, the early (<7 days) phosphorylation of ERK 1/2 is not expressed in astrocytes but in area where neurons and/or in other cell type(s) occupied, expression of p-ERK 1/2 in astrocytes is not detected until 14 days after LPA injection and lasts for at least 3 weeks. Taken together, these data suggest that LPA play an important role in proliferation of astrocytes through phosphorylation of ERK 1/2 in hippocampus. It provides further proof for the functions of LPA in CNS injury, and may contribute to clinical therapy for relative diseases.  相似文献   

6.
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class of repeat proteins—designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as inhibitors. The structural basis of ERK2–DARPin interactions based on molecular dynamics (MD) simulations was studied. The information was then used to predict stabilizing mutations employing a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence (DARPin E40) based on the associated energy and key residues involved in protein-protein interaction. MD simulations and analysis of the data obtained on these mutations supported our predictions.  相似文献   

7.
Cigarette smoking is correlated with the development of various cancers. 4 - (Methylnitrosoamino) -1 - ( 3 -pyridyl) -1-butanone (NNK) is one of the major tobacco-specific carcinogens in the cigarette smoke, which increases the risk of breast cancer. In the present study, it was demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases in human normal mammary epithelial cells. It was found that there are two different routes for the activation of ERK1/2with NNK. One is from nicotinic receptor nAchR to MEK1/2, and the other is from tyrosine kinase containing receptor to MEK1/2. The tobacco-specific carcinogen NNK shows a strong proliferative effect on normal human mammary epithelial cells and cancer mammary epithelial cells.  相似文献   

8.
Cigarette smoking is correlated with the development of various cancers. 4- (Methylnitresoamino) -1- (3-pyridyl) - 1-butanone(NNK) is one of the major tobacco-specific carcinogens in the cigarette smoke, which increases the risk of breast cancer. In the present study, it was demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases in human normal mammary epithelial cells. It was found that there are two different routes for the activation of ERK1/2 with NNK. One is from nicotinic receptor nAchR to MEK1/2, and the other is from tyrosine kinase containing receptor to MEK1/2. The tobacco-specific carcinogen NNK shows a strong proliferative effect on normal human mammary epithelial cells and cancer mammary epithelial cells.  相似文献   

9.
Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.  相似文献   

10.
Extracellular signal-regulated kinase (ERK) is a key regulatory enzyme mediating cell responses to mitogenic stimulation and is one of the key components in linking growth factor receptor activation to serine/threonine protein phosphorylation processes. Phosphorylation reaction by ERK plays an important role in many signal transduction pathways. ERK phosphorylates numerous substrates such as MBP, microtubule-associated protein 2 (MAP2) and nuclear protein. In particular, MBP is a substrate commonly employed for the detection of ERK activity and contains the consensus primary sequence PRT97P. In this paper, we compared the degree of the phosphorylation reaction of MBP substrate peptides by ERK with the three different MBP substrate peptides, MBP1(KNIVTPRTPPPSQGK), MBP2(VPRTPGGRR) and MBP3(APRTPGGRR) in order to select an efficient substrate peptide for phosphorylation reaction by ERK. The results showed that the MBP3 peptide is the most efficient substrate for phosphorylation reaction by ERK. Using MBP3 peptide, the phosphorylation reaction of MBP by ERK was monitored with both matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE). Our results demonstrate the feasibility of the CE method, the method being a simple and reliable technique in determining and characterizing various kinds of enzyme reaction especially including kinase enzymes.  相似文献   

11.
12.
(Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C3 or C4) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich–Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor–liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.  相似文献   

13.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are widely used for primary and secondary prevention of coronary artery atherosclerosis. Pathogenesis of atherosclerosis is multistep processes where transendothelial migration of various leukocytes including monocytes is a crucial step. Interferon-gamma (IFN-gamma) contributes in this process by activating macrophages and T-lymphocytes, and by inducing adhesion molecules in vascular endothelial and smooth muscle cells. In this study we investigated the expression of intercellular cell adhesion molecule-1 (ICAM-1) in transformed endothelial cell line ECV304 cells as influenced by lovastatin, tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Results show that lovastatin suppresses expression of ICAM-1 by inhibiting the IFN-gamma-induced extracellular signal-regulated kinase (ERK) p44/p42-STAT1 signaling pathway. In cells treated with lovastatin and IFN-gamma, ICAM-1 was expressed at a lower level than in cells treated with IFN-gamma alone. However, lovastatin does not reduce TNF-alpha induced expression of ICAM-1. A similar result was observed in cells treated with the MEKK inhibitor PD98059 and IFN-gamma. Cis-acting DNA sequence elements were identified in the 5'-flanking region of the ICAM-1 promoter that mediate inhibition by lovastatin; these sequences map to the IFN-gamma activated site which also binds the STAT1 homodimer. However, lovastatin did not inhibit IFN-gamma-mediated induction of the Y701 phosphorylated form of STAT1. But lovastatin does inhibit the IFN-gamma-mediated phosphorylation of ERK1/ERK2 (T202/Y204) and S727 phosphorylation of STAT1. TNF-alpha does not induce phosphorylation of ERK1/ERK2 and S727 in ECV304 and smooth muscle cells. The results provide the evidences that statins may have beneficial effects by inhibiting IFN-gamma action in atherosclerotic process  相似文献   

14.
Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKCa isoform. When PKCalpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKCalpha kinase active mutant (PKCalpha- CAT) in the undifferentiated keratinocyte, but not PKCbeta-CAT, also increased differentiation marker expressions. On the other hand, PKCalpha dominant negative mutant (PKCbeta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKCbeta-KR did not, suggesting that PKCalpha is responsible for keratinocyte differentiation. When downstream pathway of PKCalpha in Ca2+ -mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+ -mediated differentiation, and that only ERK1/2 pathway is specific for PKCalpha-mediated differentiation in mouse keratinocytes.  相似文献   

15.
9-cis-Retinoic acid (9CRA) plays an important role in the immune response; this includes cytokine production and cell migration. We have previously demonstrated that 9CRA increases expression of chemokine receptors CCR1 and CCR2 in human monocytes. To better understand how 9CRA induces CCR1 and CCR2 expression, we examined the contribution of signaling proteins in human monocytic THP-1 cells. The mRNA and surface protein up-regulation of CCR1 and CCR2 in 9CRA-stimulated cells were weakly blocked by the pretreatment of SB202190, a p38 MAPK inhibitor, and PD98059, an upstream ERK inhibitor. Activation of p38 MAPK and ERK1/2 was induced in both a time and dose-dependent manner after 9CRA stimulation. Both p38 MAPK and ERK1/2 phosphorylation peaked at 2 h after a 100 nM 9CRA treatment. 9CRA increased calcium influx and chemotactic activity in response to CCR1-dependent chemokines, Lkn-1/CCL15, MIP-1alpha/CCL3, and RANTES/CCL5, and the CCR2-specific chemokine, MCP-1/CCL2. Both SB202190 and PD98059 pretreatment diminished the increased calcium mobilization and chemotactic ability due to 9CRA. SB202190 inhibited the expression and functional activities of CCR1 and CCR2 more effectively than did PD98059. Therefore, our results demonstrate that 9CRA transduces the signal through p38 MAPK and ERK1/2 for CCR1 and CCR2 up-regulation, and may regulate the pro-inflammatory process through the p38 MAPK and ERK-dependent signaling pathways.  相似文献   

16.
p21Cip/WAF1, an important regulator of cell proliferation, is induced by both p53- and extracellular signal regulated kinase (ERK) pathways. The induction of p21Cip/WAF1 occurs by prolonged activation of the ERKs caused by extracellular stimuli, such as zinc. However, not all the cells appeared to respond to ERK pathway dependent p21Cip/WAF1 induction. Here we investigated the cause of such difference using colorectal cancer cells. p21Cip/WAF1 induction and concomitant reduction of bromodeoxyuridine (BrdU) incorporation were observed by zinc treatment within HT-29 and DLD-1. However, HCT-116 cells with high endogenous p21Cip/WAF1 levels did not show any additional increment of p21Cip/WAF1 levels by zinc treatment and did maintain high BrdU incorporation level. The p21Cip/WAF1 induction by zinc depended upon prolonged activation of extracellular signal regulated kinase (ERK) was not observed in HCT-116 cells. The percentage of BrdU positive cells was 50% higher in p21Cip/WAF1 -/- HCT-116 cells compared to p21Cip/WAF1 +/+ HCT- 116 cells, and no cells induced p21Cip/WAF1 incorporated BrdU in its nucleus, yet confirming the importance of p21Cip/WAF1 induction in anti- proliferation. These results again support that p21Cip/WAF1 induction is a determinant in the regulation of colonic proliferation by the ERK pathway.  相似文献   

17.
18.
A new C19 diterpenoid alkaloid, brevicanine (1) and six known ones (27) were isolated from Aconitum brevicalcaratum (Finet et Gagnep.) Diels. Their structures were elucidated on the basis of extensive spectroscopic analyses. The cytotoxicity of those compounds was investigated against HCT116 human cancer cell line, which showed none of them possessing considerable anti-proliferative activities. To evaluate the autophagy effect of compounds 17, Western blot was used to detect the expression of autophagic marker by stimulating human cancer HCT116 cells. The results showed that compound 6 induced protective autophagy in HCT116 cells. Mechanistic insight showed that compound 6 induced protective autophagy through p53 activation, ERK1/2 and p38 MAPK signaling cascade.  相似文献   

19.
Activation of the extra cellular signal regulated kinase (ERK) pathway is involved in both proliferation and growth arrest of cells depending on intensity and duration of stimuli. In this study, we have elucidated differential regulation of the zinc-stimulated p21(CiP/WAF1) and cyclin D1 activation by inhibition of phosphoinositide 3-kinase (PI3K). In HT-29 colorectal cancer cells, the ERK activities were increased by zinc, which was accompanied by the induction of p21(Cip/WAF1) and cyclin D1. However, in the HT-29 cells pre-treated with PI3K inhibitor, LY294002, zinc induced further the p21(CiP/WAF) induction whereas abrogated cyclin D1 induction. In addition, the induction of p21(Cip/WAF1) expression completely inhibited the incorporation of bromodeoxyuridine (BrdU) into the nucleus, indicating that p21(CiP/WAF1) is an important indicator for ERK-dependent growth arrest. These studies suggest presence of an inter-related regulatory mechanism of cell proliferation by ERK and PI3K pathways.  相似文献   

20.
The present work describes the anticancer activity of Ophiobolin A isolated from the endophytic fungus Bipolaris setariae. Ophiobolin A was isolated using preparative HPLC and its structure was confirmed by HRMS, 1H NMR, 13C NMR, COSY, DEPT, HSQC and HMBC. It inhibited solid and haematological cancer cell proliferation with IC50 of 0.4–4.3 μM. In comparison, IC50 against normal cells was 20.9 μM. It was found to inhibit the phosphorylation of S6 (IC50 = 1.9 ± 0.2 μM), ERK (IC50 = 0.28 ± 0.02 μM) and RB (IC50 = 1.42 ± 0.1 μM), the effector proteins of PI3K/mTOR, Ras/Raf/ERK and CDK/RB pathways, respectively. It induced apoptosis and inhibited cell cycle progression in MDA-MB-231 cancer cells with concomitant inhibition of signalling proteins. Thus, this study reveals that anticancer activity of Ophiobolin A is associated with simultaneous inhibition of multiple oncogenic signalling pathways namely PI3K/mTOR, Ras/Raf/ERK and CDK/RB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号