首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented demonstrating that selective intermixing of GaAs/AlGaAs quantum well heterostructures by SiO2 capping and subsequent annealing can be spatially localized with a length scale compatible with the observation of lateral quantum confinement effects. Patterning of a 400 nm-thick SiO2 encapsulation layer deposited by rapid thermal chemical vapor deposition into arrays of wires was performed using high resolution electron beam lithography and subsequent reactive ion etching. After high temperature (850°C) annealing, photoluminescence experiments indicate the creation of double barrier quantum wires when small trenches (< 100 nm) are etched in the SiO2 film at a period greater than 800 nm. Signatures of the formation of one-dimensional subbands are observed both in photoluminescence excitation spectroscopy and linear polarization anisotropy analysis. A mechanism involving the ability of the stress field generated during annealing at the SiO2 film edges to pilot the diffusion of the excess gallium vacancies which are responsible for the enhanced interdiffusion under SiO2 is suggested to account for the high lateral selectivity achievable with this novel process.  相似文献   

2.
通过真空热蒸镀和高温退火法制备的金属纳米复结构SERS基底因其具有良好的灵敏度,稳定性和均匀性而广泛应用于各种检测领域。石墨烯具有优良的光学特性,化学惰性以及荧光猝灭效应,自被发现以后一直是光学微纳器件中的一大热门材料。石墨烯还可以有效分离探针分子与基底,优化拉曼光谱质量,因此广泛应用于SERS研究领域。同时石墨烯可以有效隔绝金属纳米结构与空气的直接接触防止金属纳米结构被氧化而失效,也可以催化氧化银的脱氧反应提升SERS基底的稳定性。在石墨烯/金属纳米复合结构SERS基底在制备过程中,受到金属膜的种类、厚度参数、气体种类、退火时间、温度和气压等因素的影响,制备的金属纳米结构形貌存在很大差异。石墨烯的拉曼光谱会因为应力和掺杂导致其拉曼特征峰出现不同程度的增强,移动以及展宽。(1)采用真空热蒸镀法和高温退火法制备石墨烯/银纳米复合结构SERS基底,建立了金属纳米颗粒成型机理的模型,从孔洞形成、孔洞生长、金属纳米岛形成三个阶段分析了金属纳米粒子的成型过程,实验沉积5,10,15以及20 nm的银薄膜,退火后银纳米结构的覆盖率分别为~35.1%,~24.4%,~30%以及~96.0%,在沉积银薄膜样品上使用湿法转移石墨烯,退火处理后发现石墨烯阻止了银纳米岛的形成过程;(2)理论分析了银薄膜厚度、石墨烯覆盖对复合结构的几何形貌、拉曼增强特性的影响,石墨烯由于其具有较高的杨氏模量和表面张力,可以有效抑制退火过程中银薄膜向纳米粒子转变的过程,从而实现对复合结构表面形貌的调控;(3)实验研究了银纳米粒结构形貌对石墨烯拉曼光谱的影响,并理论分析了蒸镀不同银薄膜厚度的样品对石墨烯的拉曼光谱增强,移动以及展宽影响的具体原因。  相似文献   

3.
Multi-layered thin films, which consisted of metallic silver, GeSe3 glass, and silver oxyhalide superionic conductor glass were prepared. Photo- and electrochemical reaction of metallic silver with the chalcogenide glass layer was studied by optical absorbance and cyclic-voltammetry. Photo-doping of silver through the superionic glass layer was observed using evaporated AgI---Ag2MoO4 film and it was partly undoped by electrochemical treatment. However, no photo-doping was observed for the cell consisting of a AgI---AgPO3 dip-coated layer. The doped silver was dissolved into the GeSe3 layer during the photo-doping process. However, it formed another intermediate compound layer (probably silver selenide) during the electrodoping process.  相似文献   

4.
Effect of patterning on thermal agglomeration of ultrathin silicon-on-insulator (SOI) layer has been studied. A square-shaped 12 nm thick SOI layer was patterned by lithography and by selective etching with a KOH solution. The structural change by ultrahigh vacuum annealing in a temperature range of 900–1100 °C was observed by atomic force microscopy. The agglomeration takes place preferentially from the pattern edges at a lower annealing temperature than that for the unpatterned layer, indicating enhanced diffusion of Si atoms at the edges. Additionally, the patterning causes formation of smaller islands than those for the unpatterned layer, reflecting that the patterning limits the amount of Si atoms supplied for the island formation.  相似文献   

5.
Formation of cadmium hydroxide at room temperature onto glass substrates from an aqueous alkaline cadmium nitrate solution using a simple soft chemical method and its conversion to cadmium oxide (CdO) by thermal annealing treatment has been studied in this paper. The as-deposited film was given thermal annealing treatment in oxygen atmosphere at 450 °C for 2 h for conversion into cadmium oxide. The structural, surface morphological and optical studies were performed for as-deposited and the annealed films. The structural analyses revealed that as-deposited films consists of mixture of Cd(OH)2 and CdO, while annealed films exhibited crystalline CdO. From surface morphological studies, conversion of clusters to grains after annealing was observed. The band gap energy was changed from 3.21 to 2.58 eV after annealing treatment. The determination of elementals on surface composition of the core-shell nanoparticles of annealed films was carried out using X-ray photoelectron spectroscopy (XPS).  相似文献   

6.
Light waveguides containing silver, introduced by ion-exchange process in soda-lime glass, has been annealed in hydrogen atmosphere at temperatures in the 120–250°C range. Annealings cause a near-surface precipitation of metallic silver to form nanometer-size clusters with good uniformity in size and spatial distribution. Hydrogen permeation and ion-exchange between hydrogen and sodium (which remains in the glass matrix after silver-for-sodium exchange) are steps of the annealing process. A further step is the diffusion of silver ions towards the surface, and its eventual precipitation, with an activation energy close to that measured for silver-sodium interdiffusion in glasses of comparable composition.  相似文献   

7.
《Current Applied Physics》2020,20(8):925-930
The well-known quaternary Cu2ZnSnS4 (CZTS) chalcogenide thin films are playing an important role in modern technology. The CZTS nanocrystal were successfully prepared by solution method using water, ethylene glycol and ethylenediamine as different solvent. The pure phase material was used for thin film coating by thermal evaporation method. The prepared CZTS thin films were characterized by XRD, Raman spectroscopy, FESEM, XPS and FT-IR spectroscopy. The XRD and Raman spectroscopy analysis revealed the formation of polycrystalline CZTS thin film with tetragonal crystal structure after annealing at 450 °C. The oxidation state of the annealed film was studied by XPS. A direct band gap about 1.36 eV was estimated for the film from FT-IR studies, which is nearly close to the optimum value of band gap energy of CZTS materials for best solar cell efficiency. The CZTS annealed thin films are more suitable for using as a p-type absorber layer in a low-cost solar cell.  相似文献   

8.
It has been experimentally shown that water vapor thermal treatment of silicate glasses with silver ions introduced by ion exchange leads to the formation of a silver nanoparticle layer with a high packing density on the glass surface. The results of studying the morphology of samples by atomic force and electron microscopy and X-ray spectral analysis of the composition of nanoparticles, as well as the optical density and luminescence spectra in different stages of the treatment, are presented. Mechanisms explaining the processes responsible for silver nanoparticle formation upon water vapor thermal treatment on the glass surface after ion exchange are proposed.  相似文献   

9.
Thermal stability of Ag films in air prepared by thermal evaporation   总被引:1,自引:0,他引:1  
The thermal stability of silver films in air has been studied. Pure Ag films, 250 nm in thickness, were prepared on glass substrates by thermal evaporation process, and subsequently annealed in air for 1 h at temperatures between 200 and 400 °C. The structure and morphology of the samples were investigated by X-ray diffraction, Raman spectra and atomic force microscopy. It is found that the crystallization enhances for the annealed films, and film surface becomes oxidized when annealing temperature is higher than 350 °C. The electrical and optical properties of the films were studied by van der Pauw method and spectrophotometer, respectively. Reflectance drops sharply as Ag films are annealed at temperatures above 250 °C. Film annealed at 250 °C has the maximum surface roughness and the minimum reflectance at 600 nm optical wavelength. Film annealed at 200 °C has the minimum resistivity, and resistivity increases with the increasing of the annealing temperature when temperature is above 200 °C. The results show that both oxidization on film surface and agglomeration of silver film result in infinite of electrical resistivity as the annealing temperature is above 350 °C.  相似文献   

10.
SiO2 based glasses added with nanometric-silver particles have been prepared by the traditional sol-gel process, using the tetraethyl-orthosilicate alkoxide. The Ag particles were prepared using a new method described in this article, the method uses a cementation reaction between Ag ions and an iron electrode. The size of the particles, measured in the dried glass, was in the range of 100-200 nm. The observed structural changes depend on the annealing conditions, such as the annealing temperature, the amount of silver particles and the type of acid (HCl or HNO3) used to catalyze the hydrolysis/condensation reactions during the sol-gel process. Samples prepared using both acids crystallized into the cristobalite phase after thermal annealing at 800 °C. The amount of SiO2 crystallized depends on the amount of Ag present in the glass. Samples prepared from solutions catalyzed with HCl acid show the formation of nanometric Ag particles after thermal annealing at 500 °C, these small particles are not observed after similar treatments when HNO3 is used as the catalytic acid. HCl and Ag2O form AgCl which is reduced by residual carbon to form Ag ultrafine particles. The diffusion of the reduced Ag spices, which form these particles, is facilitated by the opened structure of the glasses added with Ag, as indicated by IR measurements.  相似文献   

11.
The production of arrays of nanoscale particles is of interest for many current scientific endeavours. Established techniques such as lithography are suitable for the task, but come with high equipment costs. An alternative is to use the distribution of glass dopants in a drawn optical fibre to define the nanometre scale pattern. The structures are then revealed by etching the glass with a selective acid. One of the critical factors when working with doped glasses is the effect of dopant diffusion encountered in the manufacturing phase as excessive diffusion will destroy the pattern. To aid in calculating the effects of diffusion, a simulation program was written which models the glass structure under various diffusion conditions likely to be encountered in the fibre production. Outputs of the simulation package are found to correlate well with experimental results. As a demonstration of the nanostructures produced, the etched fibres were employed as surface-enhanced Raman scattering (SERS) substrates.  相似文献   

12.
采用磁控溅射法在硅衬底上制备了LaCoO_3(LCO)薄膜,研究了退火温度对LCO薄膜组织结构、表面形貌及热电特性的影响,并利用X射线衍射仪、原子力显微镜(AFM)、激光导热仪等对LCO薄膜的晶体结构、表面形貌、热扩散系数等进行测量与表征.结果表明:退火温度对LCO薄膜的结晶度、晶粒尺寸和薄膜表面形貌都有较大影响;退火前后LCO薄膜的热扩散系数都随温度的升高而减小,且变化速率逐渐减缓; LCO薄膜的热扩散系数随退化温度的升高先增大后减小.LCO薄膜经过700℃退火后得到最佳的综合性能,其薄膜表面致密、平整,结晶质量最好,热扩散系数最小,热电性能最好.  相似文献   

13.
The effect of etching time scale of glass surface on its statistical properties has been studied using atomic force microscopy technique. We have characterized the complexity of the height fluctuation of an etched surface by the stochastic parameters such as intermittency exponents, roughness, roughness exponents, drift and diffusion coefficients and found their widths in terms of the etching time.  相似文献   

14.
Thin films of Ge–As–Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties.  相似文献   

15.
We analyze scanning electron microscopy measurements for structures formed in the deposition of solid silver clusters onto a silicon(100) substrate and consider theoretical models of cluster evolution onto a surface as a result of diffusion and formation of aggregates of merged clusters. Scanning electron microscopy (SEM) data are presented in addition to energy dispersive X-ray spectrometry (EDX) measurements of the these films. Solid silver clusters are produced by a DC magnetron sputtering source with a quadrupole filter for selection of cluster sizes (4.1 and 5.6 nm or 1900 and 5000 atoms per cluster in this experiment); the energy of cluster deposition is 0.7 eV/atom. Rapid thermal annealing of the grown films allows analysis of their behavior at high temperatures. The results exhibit formation of cluster aggregates via the diffusion of deposited solid clusters along the surface; an aggregate consists of up to hundreds of individual clusters. This process is essentially described by the diffusion-limited aggregation (DLA) model, and thus a grown porous film consists of cluster aggregates joined by bridges. Subsequent annealing of this film leads to its melting at temperatures lower than to the melting point of bulk silver. Analysis of evaporation of this film at higher temperatures gives a binding energy in bulk silver of ɛ0= (2.74 ± 0.03) eV/atom. The text was submitted by the authors in English.  相似文献   

16.
The Cu2ZnSnS4 (CZTS) thin films have been electrochemically deposited on Mo-coated glass substrate from weak acidic medium (pH 4.5-5) at room temperature. The effect of complexing agent (tri-sodium citrate) on the structural, morphological and compositional properties of CZTS thin films has been investigated. The as-deposited and annealed thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM),EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties, respectively. XRD studies reveal that the amorphous nature of as-deposited thin film changes into polycrystalline with kesterite crystal structure after annealing in Ar atmosphere. The film prepared without complexing agent showed well-covered surface morphology on the substrate with some cracks on the surface of the film whereas those prepared using complexing agent, exhibited uneven and slightly porous and some overgrown particles on the surface of the films. After annealing, morphology changes into the flat grains, uniformly distributed over the entire surface of the substrate. The EDAX and XPS study reveals that the films deposited using 0.2 M tri-sodium citrate are nearly stoichiometric.  相似文献   

17.
In this study, two factors which can influence fission track etching in apatite are considered: track segmentation (induced by thermal annealing) and variable radial etching speed (due to the reagent diffusion during the etching process).

During the latent track annealing, two distinguishable steps can be identified by measuring track lengths or diameters. A length reduction is firstly observed, followed by a segmentation process which leads to the emergence of disrupted regions (gaps).

At present time, electron microscopy studies on fission tracks in apatite show profiles which lead to hypotheses of a variable radial etching speed versus depth. These variations can be interpreted in terms of acid diffusion along the track. Moreover, the existence of several bulk etching speeds related to crystallographic orientation is approached.

Taking into account these different points, a software program, integrating parameters as original track orientation and depth, number of gaps, etc., is developed in order to model the track profile evolution during the etching process. Comparison with experiments in Durango apatite (Mexico) are also undertaken.  相似文献   


18.
We present a study of the preparation procedure for stepped MgO surfaces which can be used as templates for the deposition of metallic nanostructures. A cleaved sample of MgO(0 0 1) was mechanically polished to reach the desired miscut angle along the [1 1 0] direction. Then a thermal annealing was performed. The effect of an intermediate chemical etching has been also studied. The surface was analyzed by means of contact AFM in air, LEED and XPS in UHV. The role of the chemical etching and the dependence of the final morphology on the annealing time and temperature were investigated. The influence of the miscut angle on the final surface topography is also briefly discussed.  相似文献   

19.
In the current work, the etching selectivity of the AgInSbTe phase-change film in laser thermal lithography is reported for the first time. Film phase change induced by laser irradiation and etching selectivity to crystalline and amorphous states in different etchants, including hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, sodium hydroxide, sodium sulfide, ammonium sulfide and ammonium hydroxide, are investigated. The results indicated that ammonium sulfide solvent (2.5 mol/L) had excellent etching selectivity to crystalline and amorphous states of the AgInSbTe film, and the etching characteristics were strongly influenced by the laser power density and laser irradiation time. The etching rate of the crystalline state of the AgInSbTe film was 40.4 nm/min, 20 times higher than that of the amorphous state under optimized irradiation conditions (power density: 6.63 mW/μm2 and irradiation time: 330 ns), with ammonium sulfide solvent (2.5 mol/L) as etchant. The step profile produced in the selective etching was clear, and smooth surfaces remained both on the step-up and step-down with a roughness of less than 4 nm (10×10 μm). The excellent performance of the AgInSbTe phase-change film in selective etching is significant for fabrication of nanostructures with super-resolution in laser thermal lithography.  相似文献   

20.
Titanium phthalocyanine dichloride (TiPcCl2) thin films are prepared on glass substrates by vacuum-sublimation technique. The optical constants of thin films are obtained by means of thin film spectrophotometry. Planar structures for the study of electrical properties are fabricated with TiPcCl2 as active layer and silver as the contact electrodes. The effects of post-deposition annealing on the optical band gap have been studied. The optical transition is found to be direct allowed in nature. The invariance in the optical band gap shows the thermal stability of the material. The activation energies are determined using the Arrhenius plots between electrical conductivity and inverse temperature. The variation in activation energy with post-deposition annealing is investigated. The unit cell dimensions of TiPcCl2 thin films are also determined by indexing the powder diffraction data. The variations of the surface morphology and grain size with annealing have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号