首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
铜电极表面硅烷膜的自组装及其性能研究   总被引:3,自引:0,他引:3  
应用自组装技术在铜电极表面上制备3巯基丙基三甲氧基硅烷自组装膜.红外光谱研究该自组装膜结构,电化学方法考察3-巯基丙基三甲氧基硅烷膜在5%NaCl溶液中对铜电极的缓蚀性能.结果表明,于不同浓度的3-巯基丙基三甲氧基硅烷乙醇溶液中自组装的硅烷膜表现出较好的抗腐蚀性.  相似文献   

2.
We have formed the cholesterol monolayer and multilayer LB films on the self-assembled monolayers of 2-naphthalenethiol (2-NT) and thiophenol (TP) and studied the electrochemical barrier properties of these composite films using cyclic voltammetry and electrochemical impedance spectroscopy. We have also characterized the cholesterol monolayer film using grazing angle FTIR, scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Cholesterol has a long hydrophobic steroid chain, which makes it a suitable candidate to assemble on the hydrophobic surfaces. We find that the highly hydrophobic surface formed by the self-assembled monolayers (SAM) of 2-NT and TP act as effective platforms for the fabrication of cholesterol monolayer and multilayer films. The STM studies show that the cholesterol monolayer films on 2-NT form striped patterns with a separation of 1.0 nm between them. The area per cholesterol molecule is observed to be 0.64 nm2 with a tilt angle of about 28.96 degrees from the surface normal. The electrochemical studies show a large increase in charge transfer resistance and lowering of interfacial capacitance due to the formation of the LB film of cholesterol. We have compared the behavior of this system with that of cholesterol monolayer and multilayers formed on the self-assembled monolayer of thiophenol.  相似文献   

3.
We have studied the structure, adsorption kinetics, and barrier properties of self-assembled monolayers of 2-naphthalenethiol on Au using electrochemical techniques, grazing-angle Fourier transform infrared (FTIR) spectroscopy, and scanning tunneling microscopy (STM). The results of cyclic voltammetric and impedance measurements using redox probes show that 2-naphthalenethiol on Au forms a stable and reproducible, but moderately blocking, monolayer. Annealing of the self-assembled monolayer (SAM)-modified surface at 72 +/- 2 degrees C remarkably improves the blocking property of the monolayer of 2-naphthalenethiol on Au. From the study of kinetics of SAM formation, we find that the self-assembly follows Langmuir adsorption isotherm. Our STM and FTIR results show that the molecules are adsorbed with the naphthalene ring tilted from the surface normal by forming a square root 3 x 3 R30 degrees overlayer structure. From our studies, we conclude that the electron-transfer reaction of ferro/ferricyanide in the freshly formed monolayer occurs predominantly through the pinholes and defects present in the monolayer. However, in the case of thermally annealed specimen, although the ferro/ferricyanide reaction is almost completely blocked, the electron-transfer reaction of hexaammineruthenium(III) chloride is not significantly inhibited. It is proposed that the electron-transfer reaction in the case of the ruthenium redox couple takes place by a tunneling mechanism through the high-electron-density aromatic naphthalene ring acting as a bridge between the monolayer-modified electrode and the ruthenium complex.  相似文献   

4.
The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.  相似文献   

5.
In this paper we describe a systematic study comparing the properties of self-assembled monolayers (SAMs) formed by in situ deprotection and assembly of S-triphenylmethyl (trityl)- and thiolacetate-protected alkanethiols to those of SAMs formed from the parent alkanethiols. The two in situ deprotections were carried out in trifluoroacetic acid and THF/ammonium hydroxide, respectively. Monolayers of octadecanethiol (ODT) and the peptide-containing alkanethiol 3-mercapto-N-n-pentadecylpropionamide (1ATC15) were assembled on gold using the two in situ methods and characterized by contact angle goniometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and electrochemical characterization methods to assess how the monolayer properties compare to those of monolayers prepared by traditional methods. The results for the in situ deprotection of the trityl-protected molecules demonstrate that this method can afford high-quality monolayers that are nearly indistinguishable from those prepared directly from alkanethiols. The quality of the monolayers prepared using this method is shown to depend on the solubility of the trityl-protected compound in trifluoroacetic acid. The results for the in situ deprotection of acetyl-ODT indicate this method yields low-quality monolayers that contain mixtures of adsorbates bound as thiolates and thiolacetates. In situ trityl deprotection is a useful approach for monolayer formation that greatly simplifies the purification, handling, and assembly of thiol-containing monolayer precursors.  相似文献   

6.
An electrochemical method was developed for the determination of mercury using polycrystalline gold electrode modified by self-assembled monolayers (SAMs) of 2-mercaptobenzothiazole (MBTH). Morphological and electrochemical characterisation of the self-assembled structure of MBTH was performed using atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS) measurements. The monolayer of MBTH has shown high affinity for Hg2+. The limit of detection for the determination of Hg2+ using the MBTH SAMs modified gold electrode was obtained as 0.421 μg L?1. The pre-concentration of Hg2+ at open circuit potential is beneficial for the onsite monitoring of mercury concentration in water samples.  相似文献   

7.
On solvent-cleaned and piranha-etched single-crystal Al2O3(0001) surfaces, uniform, robust, self-assembled monolayers of octadecylsiloxane (ODS) are formed by 48 h exposure to a solution containing octadecyltrichlorosilane (OTS) in an anhydrous atmosphere. X-ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements confirm the presence of a uniform, complete monolayer. Reducing the exposure time or omitting the piranha-etch leads to much less uniform coverage. The ODS monolayers are stable when stored in ambient atmospheres for month-long periods. Thermal desorption in a vacuum environment (10(-9) Torr) shows the ODS monolayer is thermally stable up to at least 420 K. When heated in 200 mTorr of flowing forming gas (N2-10% H2) for 1 h at 520 K, slow loss of ODS was indicated. A schematic model is proposed which involves island nucleation by covalent bonding of OTS to surface hydroxyl groups followed by growth through the addition of mobile ODS species.  相似文献   

8.
9.
Langmuir monolayers and LB films of the ring-shaped mixed-valence polyoxomolybdate [Mo142O429H10(H2O)49(CH3CO2)5(CH3CH2CO2)](30-) (Mo142) dissolved in the aqueous subphase have been successfully fabricated by using the adsorption properties of a DODA monolayer. Infrared and ultraviolet-visible spectroscopy of the LB films indicates that Mo142 and DODA molecules are incorporated within these LB films. X-ray reflectivity experiments indicate that the LB films exhibit a well-defined lamellar structure formed by bilayers of DODA molecules alternating with monolayers of Mo142. Using behenic acid-modified hydrophobic quartz substrate is critical for the formation of the well-defined lamellar structure. From the values of the periodicity obtained by these experiments it is clear that the Mo142 clusters lie flat along the charged organic layers. AFM images also showed the flat and homogeneous films on the quartz substrates treated with behenic acid. Cyclic voltammograms of Mo142-LB films deposited on ITO substrates showed quasi-reversible oxidation/reduction waves with positive shift of the potential compared to the case of solution.  相似文献   

10.
Well-ordered, compact, self-assembled monolayers (SAMs) of hexyl and dodecyl diselenides have been formed on oriented (111) gold surfaces. Monolayer formation has been effected by adsorption from neat diselenides as well as millimolar solutions of diselenides in alcohol. The monolayer formation is confirmed using electrochemical quartz crystal microbalance studies. The stability and permeability of the monolayers at various temperatures have been probed using reflection absorption infrared spectroscopy (RAIRS) and electrochemistry. The RAIRS studies in the dry state show the formation of highly ordered, compact structures when adsorbed from neat compounds compared to the monolayers adsorbed in the presence of alcohol. The monolayers adsorbed from neat diselenide are quite stable as a function of temperature irrespective of the chain length. The electrochemical studies based on the blocking behavior of the monolayers toward electron transfer between a diffusing species and the electrode surface reflect the stability and the compactness of the structure. The results point out that the presence of solvent molecules during the SAM formation hinders the organization of the monolayer structure, especially in the case of short-chain diselenide monolayers.  相似文献   

11.
Metalloporphyrin molecules have a wide range of potential applications in diverse technological areas ranging from electronics to optoelectronics, electrochemistry, photophysics, chemical sensors, and catalysis. In particular, self-assembled monolayers of porphyrin molecules have recently attracted considerable interest. In this work we have studied for the first time the self-assembly of a novel Cu deutero porphyrin functionalized with disulfide moieties using electrochemical techniques, UV-vis absorption spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and photoelectron spectroscopies (XPS and UPS). Experimental results indicate that the molecule adsorbs retaining its molecular integrity without forming molecular aggregates via the formation of Au-S covalent bonds. Furthermore, the monolayer consists of a packed array of molecules adsorbed with the plane of the porphyrin molecule at an angle of around 30° with respect to the surface normal. Interestingly, adsorption induces reduction of the Cu center and its consequent removal from the center of the porphyrin ring resulting in porphyrin demetalation. Our results are important in the design of self-assembled monolayers of metallo porphyrins where not only blocking of the metal center by the functional groups that drive the self-assembly should be considered but also possible adsorption induced demetalation with the consequent loss in the properties imparted by the metal center.  相似文献   

12.
The electrochemical reductive desorption of the self-assembled monolayers of 3-mercaptopropionic acid in an aqueous alkaline solution gives a sharp peak with the full width at half maximum of about 20 mV irrespective of the type of cations in a linear scan voltammogram. This suggests that a strong attractive interaction exists between negatively charged carboxylate groups in the self-assembled monolayer surface due to the counterion binding, which not only simply stabilizes the adsorbed carboxylates but also makes the interaction between the adsorbed thiolates even attractive possibly by forming a two-dimensional ionic crystal. The effect of tetraalkylammonium ions on the shape of the voltammograms was also examined. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday.  相似文献   

13.
The electrochemical formation and characterization of decanoic, myristic, palmitic, and stearic acid self-assembled monolayers on a native oxide surface of 316L stainless steel have been studied. This work describes a new approach to surface modification of stainless steel in which the self-assembly of n-alkanoic acids is facilitated by applying a potential to the stainless steel in an organic electrolyte solution. While decanoic acid forms a disorganized monolayer as a result of sweeping the potential in an acetonitrile solution containing 0.1 mM of the respective acid, longer acids, that is, myristic and palmitic acids, form highly ordered closed-packed monolayers. This electrochemical approach results in highly reproducible monolayers that are deposited within a shorter time than the traditional assembly process. The monolayers were characterized by cyclic voltammetry, double-layer capacity (ac voltammetry), contact angle measurements, X-ray photoelectron spectroscopy, and external reflection-absorption Fourier transform infrared spectroscopy. The utilization and implications of this modification technique are discussed.  相似文献   

14.
Self-assembled monolayers of biomolecules on atomically planar surfaces offer the prospect of complex combinations of controlled properties, e.g., for bioelectronics. We have prepared a novel hemi-4-alpha-helix bundle protein by attaching two alpha-helical peptides to a cyclo-dithiothreitol (cyclo-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha-helix bundle protein and its template were studied by X-ray photo electron spectroscopy (XPS), electrochemical methods, and electrochemical in situ scanning tunneling microscopy (in situ STM). XPS showed that the cyclo-DTT opens on adsorption to a gold surface with the integrity of the 2 x 2-alpha-helix bundle proteins retained. The surface properties of the DTT and 2 x 2-alpha-helix bundle protein adlayer were characterized by interfacial capacitance and impedance techniques. Reductive desorption was used to determine the coverage of the adlayers, giving values of 65 and 16 muC cm(-2) for DTT and 2 x 2-helix, respectively. The 2 x 2-alpha-helix bundle protein adlayers were imaged by in situ STM. The images indicated a dense monolayer according with the voltammetric data. No long-range order could be detected, but two clearly distinct STM contrasts were assigned to 2 x 2-alpha-helix bundle protein molecules oriented in parallel and antiparallel conformations. The template molecule DTT alone forms highly ordered 30-40 nm domains, giving an adlayer density which agreed well with the coverage determined by voltammetry. This could be exploited in STM imaging of mixed DTT/2 x 2-alpha-helix bundle protein monolayers, with clearly distinct STM patterns of the two components.  相似文献   

15.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

16.
Oriented crystalline monolayers, approximately 14 A thick, of a 2 x 2 Ag+ grid complex, self-assembled at the air-solution interface starting from an water-insoluble ligand 3,6-bis[2-(6-phenylpyridine)]pyridazine spread on silver-ion-containing solutions, were examined by grazing-incidence X-ray diffraction and specular X-ray reflectivity using synchrotron radiation. The monolayer structure was refined, including a determination of the positions of the counter-ions, with the SHELX-97 computer program. The monolayers were transferred from the interface onto various solid supports and visualized by scanning force microscopy, and characterized by X-ray photoelectron spectroscopy in terms of molecular structure. On surface compression, the initial self-assembled monolayer undergoes a transition to a crystalline bilayer in which the two layers, almost retaining the original arrangement, are in registry. Such a phase transition is of relevance to the understanding of crystal nucleation.  相似文献   

17.
研究Au(111)和Au(100)表面非离子型氟表面活性剂FSN自组装膜的电化学行为.电化学扫描隧道显微术和循环伏安法测试表明,在0~0.8 V电位区间,FSN自组装膜未发生氧化还原,均一性好,可稳定地存在于电极表面,并显著抑制硫酸根离子在电极表面的吸附和Au单晶表面的重构.在FSN自组装膜Au单晶电极的初始氧化阶段,Au(111)表面有少量突起,而Au(100)表面呈现台阶剧烈变化,但FSN自组装膜的吸附结构没有改变.与Au(100)表面相比,Au(111)表面形成的FSN自组装膜可更有效地抑制Au表面的氧化.  相似文献   

18.
By means of density functional theory calculations, we investigate work functions, energy level alignments, charge transfers, and tunneling characteristics of CH3- and CF3-terminated alkane- and diphenylthiol monolayers on Au(111). While the alignments of the energy levels and the charge transfers at the metal-molecule interface are found to be determined by the value of the clean Au surface work function relative to the HOMO ionization potential (IP) at the thiolate end of the monolayer, the change of work function for the modified Au(111) surface is dominated by the properties of the thiolate monolayer, including the character, saturated or conjugated, of the molecule and the chemical nature and orientation of the terminal group. The tunneling currents through the adsorbed molecular monolayers are calculated using the Tersoff-Hamann approach. The computed difference between the I-V characteristics for the CH3- and CF3-terminated alkanethiol monolayers agree well with available experimental data. The energy barrier at the metal-molecule interface, the molecular electronic structure, and the IP of the terminal group are the key parameters which determine the tunneling properties.  相似文献   

19.
In this work, the electrochemical formation of alkanethiolate self-assembled monolayers (SAMs) on Ni(111) and polycrystalline Ni surfaces from alkanethiol-containing aqueous 1 M NaOH solutions was studied by combining Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), electrochemical techniques, and density functional theory (DFT) calculations. Results show that alkanethiolates adsorb on Ni concurrent with NiO electroreduction. The resulting surface coverage depends on the applied potential and hydrocarbon chain length. Electrochemical and XPS data reveal that alkanethiolate electroadsorption at room temperature takes place without S-C bond scission, in contrast to previous results from gas-phase adsorption. A complete and dense monolayer, which is stable even at very high cathodic potentials (-1.5 V vs SCE), is formed for dodecanethiol. DFT calculations show that the greater stability against electrodesorption found for alkanethiolate SAMs on Ni, with respect to SAMs on Au, is somewhat related to the larger alkanethiolate adsorption energy but is mainly due to the larger barrier to interfacial electron transfer present in alkanethiolate-covered Ni. A direct consequence of this work is the possibility of using electrochemical self-assembly as a straightforward route to build stable SAMs of long-chained alkanethiolates on Ni surfaces at room temperature.  相似文献   

20.
The structure of self-assembled monolayers presenting aromatic rings at a surface is studied by near edge x-ray absorption fine structure spectroscopy (NEXAFS). Fluorine substitution at asymmetric positions in the aromatic rings is used to generate a layer of dipoles at the surface of the monolayer. We find that fluorine substituted aromatic rings are more ordered than unsubstituted aromatic rings by a factor of two based on the polarization dependence of the lowest C 1s to pi* transition, which is associated with transitions from phenyl carbons attached to hydrogens. This result is consistent with the influence of dipole-dipole interactions and quadrupolar interactions between the aromatic groups due to the substitution of fluorine atoms. The work also serves to illustrate how subtle variations in the orientation of an end group of a self-assembled monolayer can be determined by using NEXAFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号