首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

2.
We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6?mM and 1.6 to 4.0?mM, with a detection limit of 0.067?mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.
Figure
A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.  相似文献   

3.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

4.
An immunosensor for determination of salbutamol was developed. It based on glass carbon electrode (GCE) modified with a conductive multilayer film comprised of multi-wall carbon nanotubes, polythionine and gold nanoparticles. Salbutamol antibody was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin (BSA). The stepwise self-assembly process of the immunosensor was studied by cyclic voltammetry. The detection scheme is based on competitive binding of salbutamol to the sensor surface whose differential pulse voltammetric signal decreases after competitive binding of the salbutamol-BSA conjugate and free salbutamol to the salbutamol antibody. The sensor responds to salbutamol in 5 to 150 nM concentration range, with a detection limit of 1 nM. This method was applied to the precise and sensitive determination of salbutamol in spiked feed samples.
Figure
In this work, we constructed a salbutamol immunosensor which was based on salbutamol-Ab adsorbed on the AuNPs/PTH/MWCNTs/GCE. Just as the procedures shown in Graph 1, competitive immunoreaction was the experimental principle. The percentage of current response of the immunosensor was proportional to salbutamol concentrations in the range of 5–150 nM.  相似文献   

5.
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode (GCE). The substrate was characterized by scanning electron microscopy (SEM), X-ray diffraction, cyclic voltammetry and amperometry. SEM micrographs indicated an uniform coverage of the carbon nanotubes with nanosized (poly)crystalline gold. Cyclic voltammetry reveals that peak separation of the unmodified GCE in the presence of 1?mM ferricyanide is 131?mV, but 60?mV only for the modified GCE. In addition, the oxidation of NADH (1?mmol?L?1 solution) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV. The effect of pH on the electrocatalytic activity was studied in the range from 5.4 to 8.0. The relationship between the anodic peak potential and the pH indicated a variation of ?33.5?mV/pH which is in agreement with a two-electron and one-proton reaction mechanism. Amperometry, performed at either ?50 or +50?mV vs. an Ag/AgCl reference electrode, indicates that the modified electrode is a viable amperometric sensor for NADH. At a working potential of +50?mV, the response to NADH is linear in the concentration range from 1 to 100???mol?L?1, with an RSD of 6% (n?=?4).
Figure
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode. The oxidation of NADH (1?mmol?L?1) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV.  相似文献   

6.
7.
8.
基于聚硫堇和纳米银固定酶的葡萄糖生物传感器   总被引:1,自引:0,他引:1  
用循环伏安法将电子媒介体硫堇电聚合在玻碳电极表面上,使其表面形成均匀的带负电的聚硫堇膜,通过静电吸附作用吸附表面带正电荷的纳米银溶胶,接着通过静电吸附带负电的葡萄糖氧化酶,最后用聚硫堇包埋电极,从而制得性能优良的葡萄糖氧化酶(GOD)生物传感器。实验发现传感器氧化峰电流与葡萄糖的浓度在1.0×10-8~5.0×10-6mol/L(r=0.9963)范围内呈良好线性关系,检出限为5.0×10-9mol/L(S/N=3)。  相似文献   

9.
A novel sensitive electrochemical biosensor based on magnetite nanoparticle for monitoring DNA hybridization by using MWNT-COOH/ppy-modified glassy carbon electrode is described. In this new detection system, mercapatoacetic acid (RSH)-coated magnetite nanoparticles, capped with 5′-(NH2) oligonucleotide, is used as DNA probe to complex 29-base polynucleotide target (a piece of human porphobilinogen deaminase PBGD promoter from 170 to 142). Target sequence hybridized with the probe results in the decrease of the reduction peak current of daunomycin connected with probe. The response of non-complementary sequence was almost the same as the blank, and the response of three-base mismatched sequence within 29-base polynucleotide was obviously distinguished from complementary sequence, which can easily identify point mutation of DNA. The equation of calibration plot is ip (μA) = 0.8255 − 0.0847ctarget oligonucleotide × 1013 in the range of 6.9 × 10−14 to 8.6 × 10−13 mol/L, and correlation coefficient is 0.9974. The detective limit is 2.3 × 10−14 mol/L of target oligonucleotide. This device can be optimized for the detection of complex sequence.  相似文献   

10.
11.
12.
13.
Xu  Wailan  He  Junlin  Gao  Liuliu  Zhang  Jing  Yu  Chao 《Mikrochimica acta》2015,182(13):2115-2122

We describe a nanostructured immunosensor for the cardiovascular biomarker netrin 1. A glassy carbon electrode was consecutively modified with multi-walled carbon nanotubes (MWCNTs), nafion (to retain the MWCNTs), thionine-coated gold nanoparticles (Thi@AuNPs), and monoclonal antibodies against netrin 1. The modified electrode was characterized by transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry, UV-visible spectrophotometry and X-ray diffraction. The presence of Thi@AuNPs warrants direct and convenient immobilization of the antibody. This immunoelectrode enables netrin 1 to be determined, best at a voltage of −300 mV (vs. SCE), with a limit of detection of 30 fg mL−1 (at an S/N ratio of 3) after a 50 min incubation time. The detection range extends from 0.09 to 1800 pg∙mL−1. The method is simple, sensitive, specific and reproducible. We presume this stable and reproducible biosensor to be useful for the early detection of cardiovascular diseases.

A high sensitivity immunoassay was developed for the detection of netrin 1 based on multi-walled carbon nanotubes, thionine and gold nanoparticles. Its excellent performance is ascribed to the good conductivity of MWCNTs and the combination of materials.

  相似文献   

14.
A biosensor with high stability was prepared to determine hydrogen peroxide (H2O2). This hydrogen peroxide biosensor was obtained by modifying glassy carbon electrode (GCE) with a composite film composed of gelatin-multiwalled carbon nanotubes. Catalase (Cat) was covalently immobilized into gelatin-multiwalled carbon nanotubes modified GCE through the well-known glutaraldehyde (GAD) chemistry in order to enhance the stability of electrodes. The enzyme sensor can achieve direct electrochemical response of hydrogen peroxide. The cyclic voltammograms at different scan rates, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) tests indicate that the enzyme sensor performs positively on increasing permeability, reducing the electron transfer resistance, and improving the electrode performance. The linear response of standard curve for H2O2 is in the range of 0.2 to 5.0 mM with a correlation coefficient of 0.9972, and the detection limit of 0.001 mM. A high operational and storage stability is demonstrated for the biosensor. The peak potential at room temperature in two consecutive weeks stays almost consistent, and the enzyme activity is kept stable even after 30 days in further study.  相似文献   

15.
A nanocomposite consisting of cadmium oxide decorated with carbon nanotubes (CdO.CNT NC) was prepared by a wet-chemical technique, and its optical, morphological, and structural properties were characterized by FTIR, UV/Vis, FESEM coupled to XEDS, XPS, and XRD methods. A flat glassy carbon electrode was modified with the nanocomposite to obtain a sensor for L-glutathione (GSH) which displays improved sensitivity, a large dynamic range and good long-term stability. The calibration plot (best acquired at a voltage of 0.5 V) is linear (r 2 = 0.99) in the 0.1 nM to 0.01 M GSH concentration range. The detection limit is as low as 30.0 pM, and the sensitivity is ~9.49 μA?μM?1?cm?2. To the best of our knowledge, this is the first report on the determination of GSH using such a modified glassy carbon electrode (GCE) in combination with I-V method. The GCE was applied to the selective determination of GSH in spiked rabbit serum samples and gave acceptable results.
Graphical abstract A selective glutathione biosensor based on wet-chemically prepared CdO.CNT/Nafion/GCE was fabricated by reliable I-V method and shows good analytical parameters such as high sensitivity, low detection limit, long-term stability, and large dynamic range.
  相似文献   

16.
We report on an electrode for the amperometric determination of lorazepam. A glassy carbon electrode was coated with a molecular imprint made by electropolymerization of ortho-phenylenediamine and filled with multiwalled carbon nanotubes and gold nanoparticles, which enhances the transmission of electrons. The sensor was studied with respect to its response to hexacyanoferrate (III) as a probe and by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The linear response range to Lorazepam is from 0.5 nM to 1.0 nM and from 1.0 nM to 10.0 nM, with a detection limit of 0.2 nM (at an S/N of 3). The electrode was successfully applied to determine Lorazepam in spiked human serum.
Figure 1
The preparation of schematic of the AuNP/MIP/f?MWCNT/GCE electrode  相似文献   

17.
A novel glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on Ag nanoparticles-decorated multiwalled carbon nanotube (AgNP-MWNT) modified glass carbon electrode (GCE). The AgNP-MWNT composite membrane showed an improving biocompatibility for GOx immobilization and an enhancing electrocatalytic activity toward reduction of oxygen due to decoration of AgNPs on MWNT surfaces. The AgNPs also accelerated the direct electron transfer between redox-active site of GOx and GCE surface because of their excellent conductivity and large capacity for protein loading, leading to direct electrochemistry of GOx. The glucose biosensor of this work showed a lower limit of detection of 0.01 mM (S/N?=?3) and a wide linear range from 0.025 to 1.0 mM, indicating an excellent analytical performance of the obtained biosensor to glucose detection. The resulting biosensor exhibits good stability and excellent reproducibility. Such bionanocomposite provides us good candidate material for fabrication of biosensors based on direct electrochemistry of immobilized enzymes.  相似文献   

18.
A novel and sensitive electrochemical DNA biosensor has been developed for the detection of DNA hybridization. The biosensor was proposed by using copper(II) complex of Luteolin C30H18CuO12 (CuL2) as an electroactive indicator based on silver nanoparticles and multi-walled carbon nanotubes (Ag/MWCNTs) modified glassy carbon electrode (GCE). In this method, the 4-aminobenzoic acid (4-ABA) and Ag nanoparticles were covalently grafted on MWCNTs to form Ag/4-ABA/MWCNTs. The proposed method dramatically increased DNA attachment quantity and complementary ssDNA detection sensitivity for its large surface area and good charge-transport characteristics. DNA hybridization detection was performed using CuL2 as an electroactive indicator. The CuL2 was synthesized and characterized using elemental analysis (EA) and IR spectroscopy. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction between CuL2 and ds-oligonucleotides (dsDNA). It was revealed that CuL2 presented high electrochemical activity on GCE, and it could be intercalated into the double helices of dsDNA. The target ssDNA of the human hepatitis B virus (HBV) was quantified in a linear range from 3.23 × 10−12 to 5.31 × 10−9 M (r = 0.9983). A detection limit of 6.46 × 10−13 M (3σ, n = 11) was achieved.  相似文献   

19.
Microchimica Acta - Gold nanoparticles (AuNP) were deposited on the surface of multiwalled carbon nanotubes (MWCNT) by in-situ thermal decomposition of gold acetate under solvent and reducing agent...  相似文献   

20.
基于多壁碳纳米管和纳米金复合膜修饰电极制备了特殊序列的靶DNA的电化学生物传感器.该传感器以六氨基合钌为杂交指示剂,用差示脉冲伏安法进行检测DNA杂化,其响应信号与靶DNA浓度在1.0×10<'-12>~1.0×10<'-7>mol/L范围内呈线性关系,检测限达3.5×10<'-13>mol/L.该传感器能区分单碱基错配的靶DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号