首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for the synthesis of ammonium citratogermanate (NH4)[Ge(OH)(H2Cit)2] · H2O (I) and potassium citratogermanate (K4[Ge(HCit)2(H2Cit)] · 3H2O (II), where H4Cit is citric acid) in aqueous MeCN were developed. The individuality, chemical composition, and thermal stability of complexes I and II were proved by elemental analysis, thermogravimetry, and IR spectroscopy. According to X-ray diffraction data, the coordination numbers of the Ge atoms are 5 and 6 and their coordination polyhedra are a square pyramid and an octahedron in complexes I and II, respectively. In both complexes, the Ge atom coordinates the deprotonated OH group and the α-carboxyl group of the ligands H n Cit4?n to form five-membered chelate rings. Hydrogen bonds in I as well as potassium cations in II serve to unite these complexes into frameworks.  相似文献   

2.
Assembly of InCl3 with 1,3,5-benzenetricarboxylic acid (H3btc) and pyridine or pyridine derivatives under hydrothermal conditions produces a series of isostructural coordination polymers with the interesting frameworks: {(HL)[In4(OH)4(btc)3]·L·3H2O}n, L=pyridine (1); L=2-picoline (2); L=4-picoline (3) and {(Hdpea)[In4(OH)4(btc)3]·3H2O}n (4) (dpea=1,2-di(4-pyridyl)ethane). In these four complexes, carboxyl and hydroxyl oxygen atoms bridge indium(III) centers to form octahedral chain-like sinusoidal curves, which are further interlinked by btc3− moieties to generate 3-D frameworks with 1-D channels. The protonated guests HL in 1-3 located at the channels can be fully exchanged by K+ ion or partially exchanged by Sr2+, and Ba2+ ions.  相似文献   

3.
Novel metal organic frameworks including {(pipzH2)[Mn(py-2,3-dc)2]·7.75H2O}n, 1, {(pipzH2)[Zn(py-2,3-dc)2]·4H2O}n, 2, [Cd(py-2,3-dc)(H2O)3]n, 3 and {(pipzH2)[Hg4Cl10]}n, 4, in which pipz is piperazine and py-2,3-dcH2 is pyridine-2,3-dicarboxylic acid were synthesized applying a proton transfer ion pair i.e. (pipzH2)(py-2,3-dcH)2 and corresponding metallic salts and studied by IR, 1H NMR, 13C NMR spectroscopy and single crystal X-ray diffractometry. The space group of compounds 1 and 4 are P21/c and C2/c of monoclinic system, respectively. The crystal dimensions are a = 20.108(2) Å, b = 19.910(2) Å, c = 12.997(1) Å, β = 94.354(2)° for 1 and a = 15.940(1) Å, b = 11.2690(9) Å, c = 11.1307(9) Å, β = 90.685(2)° for 4. The crystal structures of 2 and 3 have been reported previously. However, their solution studies are discussed here. The compounds had all polymeric structures. Although ZnII, CdII and HgII were elements of the same group, their behavior against the ion pair was essentially different. Various supramolecular interactions mainly hydrogen bonds of the type O-H?O, N-H?O, C-H?O, N-H…Cl and C-H?Cl were observed in the structures. There was an unusual and huge water cluster in the structure of compound 1. The solution states of compounds 1–4 were studied and reported. The protonation constants of pipz and py-2,3-dc, the py-2,3-dc/pipz proton transfer equilibrium constants and stoichiometry and stability of the system with Mn2+, Zn2+, Cd2+ and Hg2+ ions in aqueous solution were investigated by potentiometric pH titrations.  相似文献   

4.
A novel tripodand-type ligand (L1) having three 2,3-dihydroxynaphthalene end groups and a C3 symmetric 1,3,5-tryimethylbenzene based backbone was prepared by the reaction of 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene with 3-(2-(hydroxymethyl)allyloxy)naphthalene-2-ol followed by triple Claisen rearrangement. A 1:1 titanium complex which acts as a metallo-cryptand is obtained by the reaction of ligand (L1) with Ti(IV)(=O)(acac)2 in the presence of base. The formation of the metallo-cryptand strongly depends on templating effects by counter cations and it shows a high selectively for the encapsulation of cesium cations in its cavity.  相似文献   

5.
The insertion of N,N′-dicyclohexylcarbodiimide at one of the Y-N bonds of the [(Me3Si)2N]3Y complex in toluene at 70 °C afforded the monoguanidinate diamide derivative { (Me3Si)2NC(N-cyclo-Hex)2}Y[N(SiMe)3]2 (1) (cyclo-Hex is cyclohexyl) in 72% yield. The reaction of equimolar amounts of sodium N,N′-dicyclohexyl-N″-bis(trimethylsilyl)guanidinate, which was prepared in situ from {(Me3Si)2N}Na and N,N′-dicyclohexylcarbodiimide, and YbI2(THF)2 in THF gave the [{(Me3Si)2NC(N-cyclo-Hex)2}YbI(THF)2]2 complex (2). An attempt to use this procedure for the synthesis of the yttrium compound { (Me3Si)2NC(NSiMe3)2}2YCl containing the sterically more hindered guanidinate ligand unexpectedly led to the formation of the diamide chloride complex [{(Me3Si)2N}2Y(THF)(µ-Cl)]2 (3). The structures of complexes 1–3 were established by X-ray diffraction. Compound 1 is mononuclear. Complexes 2 and 3 are dinuclear and contain two µ2-bridging halide ligands.  相似文献   

6.
The reaction of anhydrous SmCl3 with two equivalents of lithium N,N′-diisopropyl-N″-bis(trimethylsilyl)guanidinate in THF afforded the [{(Me3Si)2NC(NPri)2}2SmCl]2 complex (1) in 82% yield. Analogous reactions with YCl3 and GdCl3 produced the ate-complexes { (Me3Si)2NC(NPri)2}2Ln(µ-Cl)2Li(THF)2 (Ln = Y (2) and Gd (3)). The structures of complexes 1 and 2 were established by X-ray diffraction. The reaction of complex 1 with NaBH4 in hexane (20 °C) followed by treatment with dimethoxyethane yielded the unexpected product, { (Me3Si)2NC(NPri)2}Sm(µ3-BH4)2(DME) (5). X-ray diffraction study showed that both borohydride ligands in complex 5 are tridentate.  相似文献   

7.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

8.
Two isomeric NS2-macrocycles incorporating a xylyl group at ortho (o -L) and meta (m -L) positions were employed and their copper complexes (1?C5) were prepared and structurally characterized. The copper(II) nitrate complexes [Cu(L)(NO3)2] (1: L = o -L, 2: L = m -L) for both ligands were isolated. In each case, the copper center is five-coordinated with a distorted square pyramidal geometry. Despite the overall geometrical similarity, 1 and 2 show the different ligand conformation due to the discriminated packing pattern. Reaction of o -L with copper(II) perchlorate afforded complex 3 containing two independent complex cations [Cu(o -L)(H2O)(DMF)(ClO4)]+ and [Cu(o -L)(H2O)(DMF)]2+; the coordination geometry of the former is a distorted octahedron while the latter shows a distorted square pyramidal arrangement. In the reactions of copper(I) halides (I or Br), o -L gave a mononuclear complex [Cu(o-L)I] (4) with a distorted tetrahedral geometry, while m -L afforded a unique exodentate 2:1 (ligand-to-metal) complex [trans-Br2Cu(m-L)2] (5) adopting a trans-type square-planar arrangement.  相似文献   

9.
The crystal structure of two salts of the complex [Ir(phen)Cl4]? anion with K+ (K[Ir(phen)Cl4]·H2O, 1) and Me4N+ ((Me4N)[Ir(phen)Cl4], 2) cations is determined. The iridium(III) ion is in a distorted octahedral environment consisting of chloride anions and a bidentate heterocyclic ligand of 1,10-phenanthroline (phen). A crucial role in the formation of the crystal structure of complex 1 belongs to K…Cl contacts, while in the crystal structure of complex 2, the stacking interactions dominate.  相似文献   

10.
A reaction of ammonium tetra(isothiocyanato)diamminechromate(III) (ammonium reineckate) with ?-caprolactam in aqueous solution at different pH values gave the novel complexes (NH4)[Cr(NH3)2(NCS)4] · 7Cpl (I), (NH4)[Cr(NH3)2(NCS)4] · 2.5Cpl · 0.5(H2O) (II), and (HCpl2)[Cr(NH3)2(NCS)4] (III), where Cpl is ?-caprolactam (?-C6H11NO). The crystals of complexes I?CIII are triclinic, space group $P\bar 1$ ; I: a = 12.7058(4) ?, b = 13.2544(4) ?, c = 19.4487(7) ?, ?? = 105.2360(10)°, ?? = 106.6410(10)°, ?? = 91.5290(10)°, V = 3009.37(17) ?3, ??calc = 1.245 g/cm3, Z = 2; II: a = 12.3144(5) ?, b = 12.6518(5) ?, c = 23.3300(8) ?, ?? = 75.4580(10)°, ?? = 80.0760(10)°, ?? = 61.0830(10)°, V = 3074.1(2) ?3, ??calc = 1.358 g/cm3, Z = 4; III: a = 6.4701(4) ?, b = 12.5973(9) ?, c = 16.5556(12) ?, ?? = 108.769(2)°, ?? = 98.543(2)°, ?? = 90.345(2)°, V = 1261.36(15) ?3, ??calc = 1.437 g/cm3, Z = 2. The structure refinement for (HCpl2)3[Cr(NCS)6] (IV) was revised. Like complex III, complex IV contains the cation (HCpl2)+ stabilized by a strong hydrogen bond between the O atoms of the ?-caprolactam molecules; the cation was structurally characterized for the first time.  相似文献   

11.
Photoirradiation of Me2CO–H2O solution of pent-4-en-1-ol (1a) with a high-pressure mercury lamp in a test tube gave 8-hydroxyoctan-2-one (3a) in 66 % yield along with oxetane (4a) and the isomer (4a′) in 10 % yield. Irradiation of the running Me2CO–H2O solution of 1a in the flow system of a microchannel reactor (MCR) gave mainly 4a. The photoreaction of 1,1-diphenylethene (2a) with triethylamine gave a Markovnikov-type adduct (5a) and an anti-Markovnikov-type adduct (6a). The use of the MCR enhanced the production of 5a. These phenomena were explained by the light-path length effects of the MCR.  相似文献   

12.
The alkyl-chlorosilyl-peroxides1 and2, the alkoxysilylalkyl-peroxides3 to7 (Table 1) as well as the hitherto unknown chlorosilanes (n-PrO)Me 2SiCl and (t-BuO)Me 2SiCl were prepared, isolated and characterized by analytical and1H-NMR data. Attempts to isolate the unstable peroxides (i-PrO)3SiOOCMe 3 and (Me 3CO)Me 2SiOOCMe 2 Ph failed.  相似文献   

13.
Crystals of a new coordination polymer with the framework structure, [Zn2(DMA)(Atc)] · DMA (I), were prepared by heating a solution of Zn(NO3)2 · 6H2O and H4Atc (H4Atc is 1,3,5,7-adamantanetetracarboxylic acid) in N,N′-dimethylacetamide (DMA). Colorless crystals of Zn2(Atc) · 2MeOH · 4H2O (II) were obtained by soaking the crystals of compound I in methanol. The structure of compound I was determined by X-ray diffraction analysis. Compounds I and II were characterized by X-ray powder diffraction, IR spectroscopy, thermal gravimetric analysis, and elemental analysis. The luminescence properties of compound I were studied.  相似文献   

14.
The reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2 (1); (Me2GaOSitBuMe2)2 (2); (Me2GaOSiEt3)2 (3); (Me2InOSiPh3)2 (4); (Me2InOSitBuMe2)2 (5); (Me2InOSiEt3)2 (6); (Me2GaSSiPh3)2 (7); (Et2GaSSiPh3)2 (8); (Me2GaSSiiPr3)2 (9); (Et2GaSSiiPr3)2 (10); (Me2InSSiPh3)3 (11); (Me2InSSiiPr3)n (12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)(10) GaS and (11)(12) InS powders, respectively.   相似文献   

15.
Single crystal XRD is used to determine the structures of the complexes (H2TMEDA)[Mg(ptac)3]2 (1, TMEDA = Me2N(CH2)2NMe2, ptac = t BuCOCHCOCF3) and (H2TMEDA)[Mg(hfac)3](hfac) (2, hfac = CF3COCHCOCF3) at a temperature of 150 K. The crystallographic data for complex 1: a = 10.2919(3) Å, b = 10.9492(4) Å, c = 15.4159(6) Å, α = 87.117(1)°, β = 89.686(1)°, γ = 79,864(1)°, space group $P\bar 1$ Z = 1, R = 0.0573; for complex 2: a = 12.9446(2) Å, b = 23.0035(4) Å, c = 13.1473(3) Å, β = 98.779(1)°, space group P21/n, Z = 4, R = 0.0605. The structures are ionic; the metal atom coordinates six oxygen atoms of three β-diketonate ligands. The distances Mg-O in complex 1 are in the range 2.036(2)–2.0920(19) Å; the same distances in complex 2 are in the range 2.051(2)–2.076(2) Å. The spatial packing is determined by the system of hydrogen bonds between the (H2TMEDA)2+ cations and [Mg(ptac)3]? (1) or hfac? (2) anions. A thermogravimetric study of complex 1 is carried out.  相似文献   

16.
Two complexes, namely, (18-crown-6)bis(perchlorato-O,O′)strontium (I) and (18-crown-6)bis(perchlorato-O,O′)barium (II), are synthesized. Their crystal structures are determined by X-ray diffraction analysis. The structures of I (space group P21/c, a = 15.266 Å, b = 11.080 Å, c = 13.235 Å, β = 109.20°, Z = 4) and II (space group P21/n, a = 8.330 Å, b = 11.202 Å, c = 11.752 Å, β = 98.38°, Z = 2) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.077 (I) and 0.041 (II) against 3714 (I) and 2478 (II) independent reflections (CAD-4 diffractometer, λMoK α radiation). Complex molecules [Sr(18C6)(ClO4)2] in the structure of I and [Ba(18C6)(ClO4)2] in II (in the inversion center)—are of the host-guest type. The Sr2+ or Ba2+ cation is localized in the center of a cavity of the 18-crown-6 ligand and coordinated by its all six O atoms. In compounds I and II, the coordination polyhedron of the Sr2+ and Ba2+ cations (coordination number 10) can be described as a distorted hexagonal bipyramid with two bifurcated vertices at two O atoms of two ClO 4 ? ligands, which are disordered in I and II and each of them has two orientations.  相似文献   

17.
The self-assembly of unsymmetrical tecton 3-nitro-5-(pyridin-4-yl)benzoic acid (HL)with cobalt chloride under hydrothermal conditions affords a new 2D coordination polymer [Co(L)2] n (1, L = 3-nitro-5-(pyridin-4-yl)benzoate), which is characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction analysis, and single crystal X-ray diffraction. Compound 1 is of the triclinic system, space group P-1 with a = 9.7857(12) Å, b = 10.3417(13) Å, c = 10.8463(13) Å, α = 85.155(2)°, β = 74.785(2)°, γ = 88.962(2)°, V = 1055.4(2) Å3. The crystal structural analysis of complex 1 shows that the cobalt center is six-coordinated in an octahedral geometry by four O atoms from four different L ligands and two N atoms from two different L ligands; the Co(II) cations are bridged by μ3-L into an interesting two-dimensional network structure. It should be pointed out that the thermal analysis results indicate that complex 1 is quite stable up to 420°C.  相似文献   

18.
The reactions of CdI2 with dimethylpyridines (Me2Py is C7H9N) afford complexes CdI2(2,3-Me2Py)2] (I), [CdI2(2,6-Me2Py) (II), and CdI2(3,5-Me2Py)2 (III). The structures of compounds I and II are determined. The crystals of complex I are orthorhombic, space group Pbca, a = 7.930(1) Å, b = 15.537(1) Å, c = 29.943(1) Å, V = 3689.1(5) Å3, ρcalcd = 2.090 g/cm3, Z = 8. The crystals of complex II are monoclinic, space group C2/c, a = 14.784(1), b = 11.991(1), c = 17.711(1) Å, β = 90.39(1)°, V = 1081.1(2) Å3, ρcalcd = 2.908 g/cm3, Z = 4. The structure of compound I is built of discrete neutral complexes [CdI2(2,3-Me2Py)2]. The Cd polyhedron is a distorted tetrahedron (Cd-I 2.289–2.295, Cd-N 2.708–2.734 Å, angles N(I)CdN(I) 103.1°-114.8°). Polymer chains [CdI2(2,6-Me2Py)] extended along the direction [100] are observed due to the bridging iodine atoms in structure II. The Cd polyhedron is a trigonal bipyramid containing iodine atoms at the axial vertices (Cd-Iaks 3.040 Å) and two iodine atoms and the nitrogen atom of the Me2Py ligand in the equatorial plane Me2Py (Cd-Ieq 2.840 Å, Cd-N 2.309 Å). The compounds in the solid state are photoluminescent.  相似文献   

19.
Reaction of a macrocyclic copper(II) complex [Cu(L)](ClO4)2 · 3H2O (I) (L = 1,3,10,12,16,19-hexaazatetracyclotetracosane) with a hexapod carboxylate ligand H6TTHA (H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid) and a tripod carboxylate ligand H3TATB (H3TATB = 4,4′,4″-S-triazine-2,4,6-triyl-tribenzoic acid) yielded two mononuclear copper(II) complexes [Cu(L)][H4TTHA] · 4H2O (II) and [Cu(L)][HTATB] · 4H2O (III). The complexes I–III have been structurally characterized. The crystal structures of complexes II and III show the copper(II) ion has a distorted pentacoordinate square-pyramidal geometry with two secondary and two tertiary amines from the macrocyclic complex [Cu(L)]2+ and one oxygen atom from the carboxylate ligand group at the axial position. The UV-Vis spectra are utilized to discuss the hydrolysis of the complex II.  相似文献   

20.
The zirconium nitrate complexes (NO2)[Zr(NO3)3(H2O)3]2(NO3)3 (1), Cs[Zr(NO3)5] ((2), (NH4)[Zr(NO3)5](HNO3) (3), and (NO2)0.23(NO)0.77[Zr(NO3)5] ((4) were prepared by crystallization from nitric acid solutions in the presence of H2SO4 or P2O5. The complexes were characterized by X-ray diffraction. The crystal structure of 1 consists of nitrate anions, nitronium cations, and [Zr(NO3)3(H2O)3]+ complex cations in which the ZrIV atom is coordinated by three water molecules and three bidentate nitrate groups. The coordination polyhedron of the ZrIV atom is a tricapped trigonal prism formed by nine oxygen atoms. The island structures of 2 and 3 contain [Zr(NO3)5]? anions and Cs+ or NH4 + cations, respectively. In addition, complex 3 contains HNO3 molecules. Complex 4 differs from (NO2)[Zr(NO3)5] in that three-fourth of the nitronium cations in 4 are replaced by nitrosonium cations NO+, resulting in a decrease in the unit cell parameters. In the [Zr(NO3)5]? anion involved in complexes 2–4, the ZrIV atom is coordinated by five bidentate nitrate groups and has an unusually high coordination number of 10. The coordination polyhedron is a bicapped square antiprism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号