首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a sensitive chronocoulometric biosensor for the sequence-specific detection of DNA. It is based on a glassy carbon electrode modified with multi-walled carbon nanotubes, polydopamine, and gold nanoparticles. The ruthenium(III)hexammine complex acts as the electrochemical indicator. Electrochemical impedance spectra and scanning electron microscopy are employed to investigate the assembly of the electrode surface. The signals of the ruthenium complex electrostatically bound to the anionic phospho groups of the DNA strands are measured by chronocoulometry before and after hybridization. The difference in signal intensity is linearly related to the logarithm of the concentration of the target DNA in the range of 1.0 nM to 10 fM with a detection limit of 3.5fM (S/N?=?3) under optimal conditions. This biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of complementary target DNA in human serum sample with satisfactory results.
Figure
We describe a sensitive chronocoulometric biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly(dopamine), and carbon nanotubes. The biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of Helicobacter pylori in human serum with a satisfactory result.  相似文献   

2.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

3.
We describe a highly sensitive and selective molecular beacon-based electrochemical impedance biosensor for the sequence-specific detection of DNA. DNA-capped conjugates between gold nanoparticles (Au-NPs) and streptavidin are used for signal amplification. The molecular beacon was labeled with a thiol at its 5′ end and with biotin at its 3′ end, and then immobilized on the surface of a bare gold electrode through the formation of Au-S bonds. Initially, the molecular beacon is present in the “closed” state, and this shields the biotin from being approached by streptavidin due to steric hindrance. In the presence of the target DNA, the target DNA molecules hybridize with the loop and cause a conformational change that moves the biotin away from the surface of the electrode. The biotin thereby becomes accessible for the reporter (the DNA-streptavidin capped Au-NPs), and this results in a distinct increase in electron transfer resistance. Under optimal conditions, the increase in resistance is linearly related to the logarithm of the concentration of complementary target DNA in the range from 1.0 fM to 0.1 μM, with a detection limit of 0.35 fM (at an S/N of 3). This biosensor exhibits good selectivity, and acceptable stability and reproducibility.
Figure
We fabricated a novel sensitive electrochemical DNA biosensor based on the molecular beacon and conjugates composed of report DNA, Au-NPs and streptavidin (DAS) amplification signal protocol. The biosensor exhibits high sensitivity and good specificity even for single-mismatched DNA detection.  相似文献   

4.
We report an electrochemical method for direct, reagentless, and label-free detection of microRNA, based on a conjugated copolymer, poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-2-carboxyethyl-1,4-naphthoquinone), acting as hybridization transducer. Hybridization between the oligonucleotide capture probe and a microRNA target of 22 base pairs generates an increase in the redox current (“signal-on”), which is evidenced by square wave voltammetry. Selectivity is good, with little hybridization for non-complementary targets, and the limit of detection reaches 650 fM. It is also evidenced that this sensitivity benefits from the high affinity of DNA for RNA.
Figure
The biosensor gives a current increase (signal-on) upon miRNA addition. It was shown that miRNAs give better sensitivity than corresponding DNAs.  相似文献   

5.
We report on a highly sensitive glucose biosensor that was fabricated from a composite made from mesoporous hydroxyapatite and mesoporous titanium dioxide which then were ultrasonically mixed with multi-walled carbon nanotubes to form a rough nanocomposite film. This film served as a platform to immobilize glucose oxidase onto a glassy carbon electrode. The morphological and electrochemical properties of the film were examined by scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometry were used to characterize the electrochemical performances of the biosensor which exhibited excellent electrocatalytic activity to the oxidation of glucose. At an operating potential of 0.3?V and pH 6.8, the sensor displays a sensitivity of 57.0?μA?mM?1?cm?2, a response time of <5?s, a linear dynamic range from 0.01 to 15.2?mM, a correlation coefficient of 0.9985, and a detection limit of 2?μM at an SNR of 3. No interferences are found for uric acid, ascorbic acid, dopamine and most carbohydrates. The sensor is stable and was successfully applied to the determination of glucose in real samples.
Figure
Mesoporous hydroxyapatite, titanium dioxide and multi-walled carbon nanotubes were ultrasonically mixed to form a rough nanofilm, and a new glucose biosensor was fabricated based on this nanofilm. The biosensor had great bioelectrocatalytic activity to glucose oxidation, and it exhibited a high sensitivity, wide linear dynamic range and high selectivity for glucose determination.  相似文献   

6.
We report on a disposable microdevice suitable for sandwich-type electrochemiluminescence (ECL) detection of DNA. The method is making use of CdTe quantum dots functionalized with hierarchical nanoporous PtFe (CdTe@PtFe) nanoparticles and with magnetic graphene nanosheets. The latter were selected as carriers for the capture DNA due to their excellent biomagnetic separation capability and electrical properties. The CdTe@PtFe nanoparticles were used to label the signal DNA which resulted in distinctly enhanced ECL owing to the large specific surface area and good electrical conductivity of the PtFe alloy. A DNA sensor was constructed on a disk-shaped indium tin oxide electrode that was fabricated via etching. Under optimal conditions, the biosensor responds linearly to DNA in the 0.02 fM to 5000 fM concentration range, with a detection limit as low as 15 aM. The electrode is regenerable. The method displays excellent specificity, extremely good sensitivity, and is highly reproducible.
Figure
CdTe quantum dots functionalized hierarchical nanoporous PtFe alloy (CdTe@PtFe) and magnetic graphene nanosheet (MGN) were applied for sensitive sandwich-type electrochemiluminescence DNA detection based on a disposable microdevice. The method displays excellent specificity, extremely good sensitivity, and is highly reproducible.  相似文献   

7.
We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130?±?5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides.
Figure
Schematic diagram for the preparation of hydrazine-functionalized magnetic particles (HFMP) and isolation of N-linked glycopeptides by HFMP from protein sample.  相似文献   

8.
We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm?2 mM?1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors.
Figure
Individual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm?2 mM?1 for uric acid detection.  相似文献   

9.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

10.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

11.
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA)  相似文献   

12.
Aptamer-based molecular recognition for biosensor development   总被引:1,自引:0,他引:1  
Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.
Figa
Aptamer-based molecular recognition for analyte detection.  相似文献   

13.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   

14.
We report on a biosensor for the electrochemical detection of the damage of DNA and of antioxidant protecting DNA. The biosensor was constructed by co-immobilization of DNA and glucose oxidase (GOx) on a glassy carbon electrode. Under aerobic conditions, GOx catalyzes the oxidation of glucose, and the hydrogen peroxide produced reacts with ferrous ions in a Fenton-type reaction to generate hydroxy radical. This was validated by UV–vis spectroscopy. The hydroxy radical can cause serious oxidative damage to DNA, and this can be detected by square wave voltammetry of the electroactive indicator Co(bpy) 3 3+ . The effects of pH value, incubation time, and the concentration of glucose and ferrous ion were optimized. The effects of the antioxidants ascorbic acid and aloe emodin on DNA damage were also investigated within the concentration range from 0.05 to 200?μM. This work provides an in-vitro model system to mimic the processes in oxidative DNA damage by a simple electrochemical approach.
Figure
Schematic diagram for working principle of SWV detection of in situ DNA damage for DNA-GOx film.  相似文献   

15.
Glutaraldehyde (GA) is widely used as a crosslinker to immobilize enzymes, for examples in biosensors, but often causes partial denaturation. We find that the proper use of poly(ethylene glycol) (PEG) during the crosslinking process can fully preserve the native state and activity of horseradish peroxidase (HRP). An amperometric biosensor was developed based on these findings for the direct determination of hydrogen peroxide. UV-Vis and FTIR spectroscopy reveal that the HRP entrapped in a polypyrrole matrix retains its native structure. The addition of PEG increases the sensitivity and stability of the biosensor and prevents many of effects caused by intra-crosslinking via GA. The biosensor was operated at a potential of ?350?mV (vs Ag/AgCl) without any mediator and gave a linear response to H2O2 in the 5 to 190???M concentration range. The apparent Michaelis-Menten constant is 3.37?mM, and maximal current is as high as 3.43???A. The surface of the biosensor was characterized by atomic force microscopy operated in the tapping mode.
Figure
Solid phase and AFM images of native and denaturized peroxidase  相似文献   

16.
Ferrocene (Fc) was encapsulated in the cavities of a NaY zeolite by vapor diffusion via sublimation at below 100?°C. The resulting Fc@NaY zeolite composite was investigated by power X-ray diffraction, diffuse reflectance UV?Cvis and FT-IR spectroscopy, and by cyclic voltammetry. The results indicated that Fc was encapsulated into the zeolite whose microporous structure had remained intact. The Fc in the silica matrix had retained its electroactivity and did not leach out. A glucose biosensor was obtained by immobilization of the modified zeolite and glucose oxidase on a carbon paste electrode. It displays a linear response to glucose (from 0.8???M to 4.0?mM), a detection limit of 0.2???M, and a response time of 4?s. The good performance of the biosensor is ascribed to the biocompatibility of the zeolite and presence of Fc which facilitates the electron transfer from the enzyme to the surface of the electrode.
Figure
Reagentless glucose biosensor is constructed by immobilization of glucose oxidase on a ferrocene@NaY zeolite composite. The biosensor displays very good responses to the different concentrations of glucose.  相似文献   

17.
We report on an amperometric sensor for ascorbic acid (AA) that is based on highly dense gold-silver nanotubes in a chitosan film on a glassy carbon electrode. The nanotubes were synthesized by a poly(vinyl pyrrolidone)-mediated polyol method employing a replacement reaction with silver nanowires as templates, and were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Under the optimal conditions, the sensor exhibits good electrocatalytic activity towards the oxidation of AA, and this enables the determination of AA in the 5 μM to 2 mM concentration range, with a detection limit at 2 μM (at an S/N of 3). The response time is 2 s. The sensor displays good reproducibility, selectivity, sensitivity, and long-term stability.
Figure
In this paper, an amperometric electrochemical sensor for detection of ascorbic acid was fabricated based on highly dense gold-silver nanotubes and chitosan film. The biosensor showed good reproducibility, anti-interferant ability, high sensitivity, low detection limit, fast response, and long-term stability.  相似文献   

18.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

19.
We report on an investigation of the optical properties of gold nanoparticles assembled as thin films of different thickness. The nanoparticles were linked to the surface of a gold chip by dithiol reagents and studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. There is good correlation between the experimental findings and theoretical simulation, and the respective data reveal the presence of ordered nanostructures in the assemblies. The shift in the SPR angle is linearly dependent on the particle size and the ratio of the different particles. SPR spectroscopy also reveals important information in terms of the optical constants of such films. This shall be further applied to in-situ quality control in the fabrication of optoelectronic, solar cell and semiconductor devices.
Figure
SPR angle shifts according to the immobilization of gold nanoparticles with different size on BDMT SAM  相似文献   

20.
A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM?1 cm?2, and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication.
Figure
A schematic diagram for the fabrication of unhybridized TiO2 nanotube arrays glucose biosensor via optimized cross-linking technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号