首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulphonated polystyrene ethylene butylene polystyrene(SPSEBS)prepared with 35%sulphonation was found to be highly elastic and enlarged up to 300%-400%of its initial length.It absorbed over 110%of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride)(PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly(MEA)preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117(0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell(PEMFC)and direct methanol fuel cell(DMFC)application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.  相似文献   

2.
以高磺化度的磺化聚芳醚酮砜(SPAEKS)和吡咯(Py)为原料,通过原位聚合的方法制备了含有不同吡咯含量的SPAEKS/PPy复合膜.红外谱图表明SPAEKS聚合物中的磺酸基团与聚吡咯(PPy)中的亚氨基基团之间形成了强烈的相互作用.扫描电镜照片显示PPy能够均匀地分散在SPAEKS聚合物基体中,没有发生团聚现象.通过对复合膜的性能测试发现PPy的引入提高了复合膜的热稳定性,降低了复合膜的吸水率,改善了其水溶胀性.同时膜中水的脱附系数下降,提高了膜的保水能力.SPAEKS/PPy-3复合膜的甲醇渗透系数达到了1.18×10-7cm2/s,明显低于纯SPAEKS膜的8.52×10-7cm2/s,而其质子传导率虽有所降低,但在25℃和80℃仍然分别达到了0.039S/cm和0.061S/cm,能够满足质子交换膜对质子传导率的要求.研究结果表明,聚吡咯与SPAEKS中磺酸基的摩尔比为0.99的复合膜有望在直接甲醇燃料电池中得到应用.  相似文献   

3.
给出了不同磺化度下的磺化聚醚醚酮(SPEEK)用作质子交换膜的一系列性能,另外提出了一种新型的酸碱共混质子交换膜,其中,磺化聚醚醚酮和壳聚糖分别被选为酸性、碱性高分子电解质,并对所制备的质子交换膜的相关性能如质子传导性,甲醇渗透性,吸水率以及膜溶胀性、热稳定性等进行了表征,结果表明此种新型复合膜尽管在质子传导性能方面有所下降,阻醇性能改变不大,但是膜溶胀性和吸水率方面有了较大的改善.磺化度为71.4%的SPEEK与壳聚糖以5∶1摩尔比共混制备的质子交换膜,其性质可以与商品化的Nafion 117相媲美,有望在甲醇燃料电池中得到应用.  相似文献   

4.
对各种类型的聚合物质子交换膜,如全氟磺酸聚合物、部分氟化磺酸聚合物、非氟磺酸聚合物、有机-无机复合质子交换膜的结构、性质以及最新的研究进展进行了综述.并且,对该领域未来的发展进行了展望.  相似文献   

5.
将磺化二氯二苯砜(SDCDPS)、二氯二苯砜(DCDPS)与4,4′-联苯酚(BP)通过亲核缩聚反应得到一系列具有不同磺化度的磺化聚芳醚砜(SPAES)共聚物.通过FT-IR,TGA和DSC等分析方法对其结构及性能进行表征.并用透射电镜对其内部形态进行分析,建立了结构与性能之间的关系.研究了不同磺化度对膜性能的影响.结果表明,聚合物中磺酸基团的增多导致了磺化聚芳醚砜膜的吸水率、离子交换容量、质子传导率和甲醇渗透系数的增加.通过对膜的综合性能评价发现,磺化度为0.8的磺化聚芳醚砜膜在80℃时的质子传导率为0.116S/cm,100℃时的质子传导率为0.126S/cm,均高于Nafion117膜(0.114S/cm和0.117S/cm),且甲醇渗透系数为8.4×10-7cm2/s,远远低于Nafion117膜(2.1×10-6cm2/s).  相似文献   

6.
杂化材料作为一种新型材料结合了有机无机材料的优异特性,具有较高的热稳定性、机械强度和某些特殊的化学性质,在微电子、光电设备、传感器和分离膜等诸多领域得到应用与研究.溶胶凝胶法作为合成杂化材料的主要手段,具有反应条件温和,可通过调配反应参数来控制杂化材料的微观形态和性质等优点.  相似文献   

7.
采用溶胶凝胶法制备了硅藻莫来石负载的SiO2(SiO2KM)负载的聚酰亚胺二氧化硅银杂化膜,采用IR、TGA、SEM、XRD、氮吸附、气体渗透性能测量等方法对膜的性能进行了表征.银的加入使杂化溶胶的粘度增大,膜孔径增大,孔径分布弥散;二氧化硅在杂化膜中以无定型存在,银以氯化银的形式存在;Ag+和聚酰亚胺中的氮以配位键络合在一起,丙烯通过双键吸附在Ag+上;杂化膜热稳定性随二氧化硅的加入而增加,随银的加入而降低.丙烯丙烷在杂化膜上的分离因子为3.54~4.1,银的加入对丙烯的传输有明显的促进作用.  相似文献   

8.
研究了多孔壳聚糖膜对乙醇-水混合体系中微量醛的吸附性能。通过对影响其吸咐性能的各种因素如壳聚糖膜的制备方法。用量、醇-水体中醇浓度、酸度及其温度等的研究,认为壳聚糖适用于醇-水混合体系中微量醛的清除,并据此提出了吸附操作的优化条件。  相似文献   

9.
通过在磺化聚醚醚酮(SPEEK)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))制备出SPEEK/Zr(PBTC)复合质子交换膜.结果表明,与纯SPEEK膜相比,Zr(PBTC)的掺杂能降低复合膜的吸液量及甲醇透过系数,且随着Zr(PBTC)含量的增加,这种作用越趋明显.在室温至80℃范围内,复合膜的甲醇透过系数在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,当温度大于90℃时,含40wt%Zr(PBTC)的复合膜电导率超过Nafion115膜,并在160℃时达到0.36S.cm-1.使用温度的提高及在高温下的高电导率表明该复合膜适合在高温DMFC中使用.  相似文献   

10.
通过预水解的二氧化钛(TiO2 )溶胶与丙烯酸树脂共混或原位聚合的方法制备了均匀透明的丙烯酸树脂 TiO2 有机 无机杂化材料.考察了TiO2 溶胶制备方法、聚合物中—COOH官能团含量和杂化材料制备方法对杂化材料结构的影响.索氏抽提实验表明聚合物中的羧酸官能团和无机TiO2 相间发生了交联反应,且随着—COOH官能团含量的增加,交联程度增大.小角X射线散射(SAXS)结果发现,杂化材料中TiO2 为疏松的三维网状结构,且在纳米尺度范围内,但这种三维网状结构随着TiO2 溶胶制备中水或酸的用量增加,其致密度增加,尺寸增大.同原位聚合法相比,共混法可制备出更均匀的杂化体系,且TiO2 为单分散.  相似文献   

11.
聚偏氟乙烯-Nafion共混膜的制备及阻醇质子导电性能研究   总被引:7,自引:0,他引:7  
直接甲醇燃料电池 (Directmethanolfuelcell,MDFC)以高效、清洁和燃料储运方便等优点成为一类极具发展潜力的新型动力源 .但目前DMFC中普通使用的全氟磺酸膜 (如NafionTM 系列膜 )阻醇性能太差 ,导致大量甲醇从阳极穿过膜直接透到阴极 ,造成燃料的浪费和电池整体性能的下降 .据文献报道 ,即使甲醇浓度低到 1mol L ,也有近40 %的醇透过膜 .缺乏高性能的阻醇质子导电聚合物电解质膜是制约DMFC发展的瓶颈之一 .已有一些研究人员致力于新型膜材料的开发 ,如有人研制了聚苯并咪唑膜[1] 及各种掺杂…  相似文献   

12.
13.
通过探讨共混比例、螯合树脂粒径及铸膜液温度对膜结构的影响 ,确定了最佳制膜工艺 ,用相转换法制备出对Cu2 + 具有大螯合容量的非均相螯合滤膜 .研究了螯合树脂颗粒粒径、盐溶液pH值和盐溶液浓度对膜螯合吸附量的影响 ,发现膜对Cu2 + 的最大吸附量可达 70 0 μg cm2 ,吸附行为满足Freundlich吸附等温式 .对膜进行动态螯合吸附测试表明该膜对Cu2 + 可实现吸附与解吸同步进行  相似文献   

14.
用低压化学气相沉积法制备TiO2薄膜。研究表明,水的分压、沉积温度、基片材料均对沉积速率有影响。在硅片上镀膜,沉积温度相同而退火温度不同,则薄膜结构亦不同。当退火温度高于85℃时,薄膜为纯金红石薄膜。  相似文献   

15.
近年来,半导体纳晶多孔薄膜作为一类重要的纳米结构材料,其光电化学性质及功能特性的研究受到人们广泛关注。由于量子尺寸效应及介电限域效应,它们的光物理、光电化学性质以及电荷传输机理明显异于多晶及单晶体材料。通过简便快捷的涂敷、浸涂或溅射等方法,半导体纳晶多孔薄膜可以在导电衬底上形成。这些薄膜具有高度多孔性、大比表面,易于用有机功能分子或半导体超微粒进行表面修饰[1-2],在太阳能转换[2]、光电子器件或电子变色器件[3]及光催化治理环境污染[4]等方面具有潜在的应用前景。因此,在光电化学、半导体物理及材料科学领域里研究十分活跃。本文采用涂敷及浸涂提拉方法制备了四种具有不同多孔率及比表面的TiO2薄膜电极,并对其晶型、表面形貌微结构及光电化学性能进行了研究。  相似文献   

16.
SO2-4/TiO2┐Al2O3┐SnO2催化剂的研制及其催化合成己二酸二辛酯高根之(曲阜师范大学化学系,曲阜273165)于世涛杨锦宗*(大连理工大学精细化工系,大连116012)关键词固体超强酸,SO2-4/TiO2-Al2O3-SnO2催化剂,...  相似文献   

17.
可聚合纳米SiO2杂化材料的制备及其性能研究   总被引:1,自引:0,他引:1  
利用异佛尔酮二异氰酸酯(IPDI)和纳米SiO2表面-OH基团反应的特点,制备了表面含-NCO基团的纳米SiO2,用端羟基聚丙二醇醚(PPG)对其扩链并进一步和丙烯酸羟乙酯(HEA)反应,制备了丙烯酸酯封端、IPDI和PPG连接纳米SiO2粒子的纳米SiO2杂化材料.用红外光谱(FTIR)、热失重(TGA)和扫描电镜(...  相似文献   

18.
以有机改性聚硅氧烷为单体加入液态电解质通过紫外光辐射固化制备了无机有机杂化聚合物电解质.含有丙烯酸酯端基的有机改性聚硅氧烷单体是通过正硅酸甲酯(TMOS)的水解缩合反应产物与丙烯酸2羟乙酯(HEA)进行脱甲醇反应合成的.它是一种多官能团单体,其结构通过核磁共振氢谱(1HNMR)分析、红外光谱(FTIR)分析及二氧化硅分析进行了表征,分子式可表达为SiO1.143(OH)0.016(OCH3)1.339(OCH2CH2OCOCHCH2)0.357.无机有机杂化聚合物电解质的电化学性能通过交流阻抗和循环伏安法进行了表征.其离子电导率随着液态电解质含量的增大而提高,当液态电解质含量为85wt%时,电导率在22℃为5.5×10-3Scm-1,在-23℃也能达到1.1×10-3Scm-1.界面电阻经过开始2天的增大后达到稳定,电化学稳定窗口超过5.0V,不锈钢电极上锂的电化学沉积与剥离循环可逆性很高.  相似文献   

19.
超细CeO2粉体的制备及其担载Pd催化剂的性能   总被引:1,自引:0,他引:1  
杨成  任杰  孙予罕 《燃料化学学报》2001,29(Z1):150-153
用溶胶-凝胶法制得了粒径为10nm~15nm、均匀分散的CeO2超细粒子粉体,其担载Pd催化剂比工业CeO2颗粒为载体的催化剂具有更高的甲醇低温裂解活性.通过BET、XRD、HRTEM、TPR以及CO-FTIR等表征手段对催化剂和载体的结构和性能进行研究,结果表明Pd在高比表面积的超细CeO2载体上高度分散,其还原度明显增大,但由于产生了较强的Pd-CeO2相互作用,阻碍了超细CeO2中氧物种的还原,并且产生了较多的甲醇裂解活性位.  相似文献   

20.
1972年, Fujishima等发现受辐射的TiO2上可以持续发生水的氧化还原反应产生氢, 从此, 半导体光催化受到了重视并得到进一步广泛的研究[1]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号