首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New alkynyl complexes [Pt2M4{CC(3-OMe)C6H4}8] (M = Ag 1, Cu 2) have been synthesized and their structures and properties compared to those of related [Pt2M4(CCPh)8] compounds. For the Pt-Ag derivatives, the X-ray structures of the discrete yellow solvate monomer, [Pt2Ag4{CC(3-OMe)C6H4}8].2THF ([1.2THF]), and the dark garnet unsolvated polymeric form, [Pt2Ag4{CC(3-OMe)C6H4}8](infinity) ([1](infinity)), are presented. The yellow form ([1.2THF]) exhibits a distorted octahedral geometry of the metal centers with the platinum atoms mutually trans and the four silver atoms in the equatorial plane. Pairs of Ag atoms are weakly bridged by THF molecules [mu-Ag2...O(THF)]. The garnet form ([1](infinity)) has an unprecedented infinite stacked chain of octahedral clusters linked by short Pt...Pt bonds (3.1458(8) A). In both forms, different types of weak C-H...O (OMe) hydrogen bonds are observed. For comparative purposes, we have also provided the crystal structures of the yellow monomer form, [Pt2Ag4-(CCPh)8].CHCl3, and the red dimer form, [Pt2Ag4(CCPh)8]2 (Pt-Pt 3.221(2) A). These clusters display intense photoluminescence in both solution and the solid state, at room temperature and 77 K. The emission observed for the yellow form [1.2THF] in the solid state is assigned to a 3MLM'CT [Pt(d)/pi(CCR) --> Pt(p(z))/Ag(sp)/pi(CCR)] state modified by Pt...Ag, Ag...Ag, and Ag...(THF) contacts. However, in the garnet form [1](infinity) and in 2, the emissions are related to the axial Pt-Pt bonds and are assigned as phosphorescence from a metal-metal-to-ligand charge-transfer (3MMLCT) excited state ([1](infinity)), or an admixture of a metal-metal (Pt-Pt) centered 3(dsigmap(z)sigma) and 3MMLCT excited state (2). For 1, a remarkable quenching and a shift to higher energies in the emission is observed on changing from CH2Cl2 to THF, and for both 1 and 2, the emission spectra at 77 K varies with the concentration, showing their tendency to stack even in glass.  相似文献   

2.
A new set of luminescent platinum(II) diimine complexes has been synthesized and characterized. The anionic ligands in these complexes are arylacetylides. The complexes are brightly emissive in fluid solution with relative emission quantum yields phiem ranging from 3 x 10(-3) to 10(-1). Two series of complexes have been investigated. The first has the formula Pt(Rphen)(C...CC6H5)2 where Rphen is 1,10-phenanthroline substituted in the 5-position with R = H, Me, Cl, Br, NO2, or C...CC6H5, while the second has the formula Pt(dbbpy)(C=CC6H4X)2 where dbbpy = 4,4'-di(tert-butyl)bipyridine and X = H, Me, F, or NO2. From NMR, IR, and electronic spectroscopies, all of the complexes are assigned a square planar coordination geometry with cis-alkynyl ligands. The crystal structure of Pt(phen)(Ce-CC6H4CH3)2 confirms this assignment. All of the complexes exhibit an absorption band at ca. 400 nm that corresponds to a Pt d-->pi*diimine charge-transfer transition. The variation of lambdamax for this band with substituent variation supports this assignment. From similar changes in the energy of the solution luminescence as a function of substituents R and X, the emissive excited state is also of MLCT origin, but with spin-forbidden character on the basis of excited-state lifetime measurements (0.01-5.6 micros). The complexes undergo electron-transfer quenching, showing good Stern-Volmer behavior using 10-methylphenothiazine and N,N,N',N'-tetramethylbenzidine as reductive quenchers. Excited-state reduction potentials are estimated on the basis of a simple thermochemical analysis. Crystal data for Pt(phen)(C...CC6H4CH3)2: monoclinic, space group C2/c, a = 19.0961(1) A, b = 10.4498(1) A, c = 11.8124(2) A, beta = 108.413(1) degrees, V = 2236.49 A3, number of reflections 1614, number of variables 150, R1 = 0.0163, wR2 (I > 2sigma) = 0.0410.  相似文献   

3.
The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.  相似文献   

4.
This paper reports that (alpha-diimine)PdMe+ catalyzes the copolymerization of olefins and silyl vinyl ethers. The reactions of (alpha-diimine)PdMe+ (alpha-diimine = (2,6-iPr2-C6H3)N=CMe-CMe=N(2,6-iPr2-C6H3)) with excess vinyl ethers CH2=CHOR (1a-d: R = tBu (a), SiMe3 (b), SiPh3 (c), Ph (d)) in CH2Cl2 at 20 degrees C afford polymers for 1a (rapidly) and 1b (slowly) but not for 1c or 1d. The structures of poly(1a,b) indicate a cationic polymerization mechanism. The reaction of (alpha-diimine)PdMe+ with 1-2 equiv of 1a-d proceeds by sequential C=C pi-complexation to form (alpha-diimine)PdMe(CH2=CHOR)+ (2a-d), 1,2 insertion to form (alpha-diimine)Pd(CH2CHMeOR)+ (3a-d), reversible isomerization to (alpha-diimine)Pd(CMe2OR)+ (4a-d), beta-OR elimination to generate (alpha-diimine)Pd(OR)(CH2=CHMe)+ (not observed), and allylic C-H activation to yield (alpha-diimine)Pd(eta3-C3H5)+ (5) and ROH. The reaction of (alpha-diimine)PdMe+ with 1-hexene/1b and 1-hexene/1c mixtures in CH2Cl2 at 20 degrees C affords copolymers containing up to 20 mol % silyl vinyl ether. The copolymers were purified to be free of any -[CH2CHOSiR3]n- homopolymer. The copolymer structures are similar to that of homopoly(1-hexene) generated under the same conditions. The major comonomer units are CH3CH(OSiR3)CH2-, CH2(OSiR3)CH2- and -CH2CH(OSiR3)CH2-. The 1-hexene/CH2=CHOSiR3 copolymers can be desilylated to give 1-hexene/CH2=CHOH copolymers. The results of control experiments argue against cationic and radical mechanisms for the copolymerization, and an insertion/chain-walking mechanism is proposed.  相似文献   

5.
NiX2(2-RSC6H4CH=NCH2CH2N=CHC6H4SR-2) (NiX2L; L = 5) (1a, X = Br, R = C6H13; 1b, X = Cl, R = C12H25) and NiX2(2-C6H13SC6H4CH2NHCH2CH2NHCH2C6H4SC6H13-2) (NiX2L; L = 6) (2a, X = Br; 2b, X = Cl; 2c, X = OClO3) were prepared from ligands 5 and 6, respectively. The 1:2 metal-ligand complex Ni(OClO3)2(2-RSC6H4CH2NHCH2CH2NHCH2C6H4SR-2)2 3, was obtained from an EtOH solution of 2c. The characterization of paramagnetic 1-3 included single-crystal X-ray diffraction studies of 1a and 3. Complex 2c converted into 3 in the presence of excess ligand 6 in CHCl3.  相似文献   

6.
The first theoretical investigation of a series of surface-decorated corannulene cations, {R-C(20)H(10)}(+), where R = H, CH(3), CH(2)Cl, CHCl(2), and CCl(3), is accomplished. Three possible isomers of {R-C(20)H(10)}(+) such as hub-, rim-, and spoke-functionalized corannulene derivatives are considered and compared. The trends in their stability and transition barriers are provided. A detailed study of energetics of {R-C(20)H(10)}(+) is complemented by in-depth investigation of their electronic structures and aromaticity.  相似文献   

7.
The synthesis and X-ray structural and spectroscopic characterization for LAuC triple bond CAuL x 4CHCl(3) and LAuC triple bond C--C triple bond CAuL x 2CH(2)Cl(2) (1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively; L = PCy(3), tricyclohexylphosphine) are reported. The bridging C(n)(2-) units are structurally characterized as acetylene or diacetylene units, with C triple bond C distances of 1.19(1) and 1.199(8) A for 1 x 4CHCl(3) and 2 x 2CH(2)Cl(2), respectively. An important consequence of bonding to Au(I) for the C(n)(2-) moieties is that the lowest-energy electronic excited states, which are essentially acetylenic (3)(pi pi*) in nature, acquire sufficient allowedness via Au spin-orbit coupling to appear prominently in both electronic absorption and emission spectra. The origin lines for both complexes are well-defined and are observed at 331 and 413 nm for 1 and 2, respectively. Sharp vibronic progressions corresponding to v(C triple bond C) are observed in both emission and absorption spectra. The acetylenic (3)(pi pi) excited state of 2 has a long lifetime (tau(0) = 10.8 mus) in dichloromethane at room temperature and is a powerful reductant (E degrees [Au(2)(+)/Au(2)] < or = -1.85 V vs SSCE).  相似文献   

8.
Incorporation of diplatinum complex Pt2(micro-dppm)2(bpyC[triple bond]C)4 or Pt2(mu-dppm)2(phenC[triple bond]C)4 with Ln(hfac)3(H2O)2 (Ln = Nd, Eu, Yb) gave a series of Pt2Ln2 and Pt2Ln4 bimetallic arrays, in which the excitation of d(Pt) -->pi*(R-C[triple bond]C) MLCT absorption induces sensitisation of lanthanide luminescence through efficient d --> f energy transfer from Pt(II) alkynyl chromophores.  相似文献   

9.
The diastereofacial selectivity of 2-methyl-5-X-adamant-2-yl cations IX (X = CN, Cl, Br, CH3O, COOCH3, C6H5, CH3, and (CH3)3Sn) toward methanol has been investigated in the gas phase at 750 Torr and in the 40-120 degrees C temperature range and compared with that of IF (X = F) and ISi (X = (CH3)3Si) measured previously under similar conditions. Detailed analysis of the energy surface of the IMe (X = CH3) ion reveals that the activation barrier of its syn addition to methanol is significantly lower than that of the anti attack. In the 40-100 degrees C range, such a difference is strongly reduced by adverse entropic factors which are large enough to invert the IMe diastereoselectivity from syn to anti at T > 69 degrees C. The behavior of IMe diverges markedly from that of IF and ISi. Large adverse entropic factors account for the predominant syn diastereoselectivity observed in the reaction with IF (X = F), notwithstanding the anti enthalpy barrier is lower than the syn one. Adverse entropy plays a minor role in the reaction with ISi (X = (CH3)3Si) which instead exhibits a preferred anti diastereoselectivity governed by the activation enthalpies. Depending on the electronic properties of X, the kinetic behavior of the other IX ions obeys one of the above models. The gas-phase diastereoselectivity of IX ions responds to a subtle interplay between the sigma-hyperconjugative/electrostatic effects of the X substituent and the activation entropy terms. sigma-Hyperconjugation/field effects determine the pyramidal structure and the relative stability of the syn and anti conformers of IX as well as the relative stability of their addition transition structures and their position along the reaction coordinate. The diastereoselectivity of IX in the gas phase is compared with that measured in solution and with theoretical predictions.  相似文献   

10.
The two-step synthesis of a new unsymmetrical ligand 2-[Ph2PC6H4C(H)=N]C6H4[N(H)COCH2N(H)CO2Bz], 2.HH, via acid-catalyzed Schiff base condensation of 2-(H2N)C6H4[N(H)COCH2N(H)CO2Bz], 1, with 2-Ph2PC6H4(CHO) in refluxing EtOH is reported. The multidentate ligand 2.HH, isolated in ca. 60% yield, exhibits an array of ligation modes, as exemplified by coordination studies with NiII, PdII, PtII, and AuI mononuclear metal precursors. Hence, reaction of 2.HH with AuCl(tht) (1:1 molar ratio, tht = tetrahydrothiophene) affords AuCl(2.HH), 3, in which the ligand behaves as a classic, neutral two-electron phosphorus donor. In contrast, reaction with MCl2(cod) (M = Pt, Pd; cod = cycloocta-1,5-diene) affords the corresponding dichloro complexes MCl2(2.HH) (4a M = Pt; 4b M = Pd) in which kappa2-P/N-chelation through both P and imino N-donor atoms is observed. Likewise, treatment of Pd(CH3)Cl(cod) with 2.HH gave Pd(CH3)Cl(2.HH), 4c, in which the imino nitrogen is trans to the methyl ligand. Cycloocta-1,5-diene elimination from, and single methyl protonation of, Pt(CH3)2(cod) with 1 equiv of 2.HH in toluene at ambient temperature affords the neutral complex Pt(CH3)(2.H-), 5a, in which 2.H- functions effectively in a kappa3-PNN' coordination mode. The dichloro compounds 4a or 4b undergo smooth N(H) deprotonation with tBuOK to give 6a\6a' and 6b\6b' in which 22- acts as a dianionic kappa4-PNN'N' ' ligand. The corresponding square-planar, diamagnetic, nickel(II) complex 6c\6c' was prepared in excellent yield from NiCl2.6H2O, 2.HH, and tBuOK. Variable-temperature NMR experiments confirm 6a\6a' and 6b\6b' exist, in solution, as a pair of conformational (anti and syn) isomers due to restricted rotation about the N-CO2Bz group. This feature is also borne out by single-crystal X-ray studies of anti-6a.CHCl3, syn-6a'.H2O, anti-6b.CHCl3, and anti-6c.CH2Cl2. To the best of our knowledge, we believe these constitute the first examples of crystallographically characterized conformers of a tetradentate ligand incorporating a P-donor center. All new compounds reported have been fully characterized by a combination of spectroscopic (NMR, FT-IR, ES-MS) and analytical methods. Furthermore, single-crystal X-ray studies have also been undertaken on compounds 2.HH, 3, 4a, and 5a.Et2O.  相似文献   

11.
To investigate the nature of weak nonbonded selenium...halogen interactions (Se...X interactions; X = F, Cl, and Br), three types of model compounds [2-(CH(2)X)C(6)H(4)SeY (1-3), 3-(CH(2)X)-2-C(10)H(6)SeY (4-6), and 2-XC(6)H(4)CH(2)SeY (7-9); Y = CN, Cl, Br, SeAr, and Me] were synthesized, and their (77)Se NMR spectroscopic behaviors were analyzed in CDCl(3). The gradual upfield shifts of (77)Se NMR absorptions observed for series 1-3 and 4-6 suggested that the strength of Se...X interaction decreases in the order of Se...F > Se...Cl > Se...Br. The quantum chemical calculations at the B3LYP/631H level using the polarizable continuum model (PCM) revealed that the most stable conformer for 1-3 is the one with an intramolecular short Se...X atomic contact in CHCl(3) (epsilon = 4.9) and also that the n(X) --> sigma(Se-Y) orbital interaction (E(Se...X)) can reasonably explain the order of strength for the Se...X interactions. On the other hand, the (77)Se NMR absorptions observed for series 7-9 did not shift significantly from the reference compounds (C(6)H(5)CH(2)SeY), indicating the absence of the Se...X interaction for 7-9 presumably due to attenuation of basicity for the halogen atom that is substituted directly to the aromatic ring. These observations suggested that the n(X) --> sigma(Se-Y) orbital interaction is a dominant factor for formation of weak Se...X interactions. Electron correlation was also suggested to be important for the stability.  相似文献   

12.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

13.
Complexes cis-[M(C(6)F(5))(2)(THF)(2)] (M = Pd, Pt) are weak Lewis acids and react with the halocarbon ligand 2-iodoaniline (R-I) yielding the corresponding cis-[M(C(6)F(5))(2)(R-I)] [M = Pd (1), Pt (2)]. In these complexes a (C-)I-M bond is present. The use of other 2-haloanilines (halogen = F, Cl, Br) does not yield the analogous complexes because of the lesser nucleophilic character of the halogen involved. The presence of the (C-)I-Pt bond in 2 has been confirmed by an X-ray structure determination, which also reveals an N-H.M hydrogen bond between two neutral molecules. Complex 2 crystallizes in the space group P&onemacr;: Z = 4; a = 11.797(4) ?; b = 13.735(4) ?; c = 14.107(4) ?; alpha = 97.24(2) degrees; beta = 90.91(2) degrees; gamma = 99.44(2) degrees; V = 2235(2) ?(3). Similarly, complexes cis-[M(C(6)X(5))(2)(THF)(2)] (M = Pd, Pt; X = F, Cl) react with the ligand 2-benzoylpyridine {R-C(O)Ph}, in which the oxygen atom of the ketonic group can behave as a nucleophilic center, yielding the complexes cis-[M(C(6)X(5))(2){R-C(O)Ph}] [M = Pd, X = F (3); M = Pt, X = F (4), Cl (5)]. Complex 3 crystallizes in the space group C2/c: Z = 16; a = 26.284(3) ?; b = 10.623(1) ?; c = 31.423(4) ?; beta = 93.15(1) degrees; V = 8760(2) ?(3). The I-M or O-M bonds in complexes 1-5 are weak and can be easily broken by the addition of neutral (CO, PPh(3), and CH(3)CN) or anionic (Br(-)) ligands.  相似文献   

14.
The CCSD(T) level interaction energies of CH/pi complexes at the basis set limit were estimated. The estimated interaction energies of the benzene complexes with CH(4), CH(3)CH(3), CH(2)CH(2), CHCH, CH(3)NH(2), CH(3)OH, CH(3)OCH(3), CH(3)F, CH(3)Cl, CH(3)ClNH(2), CH(3)ClOH, CH(2)Cl(2), CH(2)FCl, CH(2)F(2), CHCl(3), and CH(3)F(3) are -1.45, -1.82, -2.06, -2.83, -1.94, -1.98, -2.06, -2.31, -2.99, -3.57, -3.71, -4.54, -3.88, -3.22, -5.64, and -4.18 kcal/mol, respectively. Dispersion is the major source of attraction, even if substituents are attached to the carbon atom of the C-H bond. The dispersion interaction between benzene and chlorine atoms, which is not the CH/pi interaction, is the cause of the very large interaction energy of the CHCl(3) complex. Activated CH/pi interaction (acetylene and substituted methanes with two or three electron-withdrawing groups) is not very weak. The nature of the activated CH/pi interaction may be similar to the hydrogen bond. On the other hand, the nature of other typical (nonactivated) CH/pi interactions is completely different from that of the hydrogen bond. The typical CH/pi interaction is significantly weaker than the hydrogen bond. Dispersion interaction is mainly responsible for the attraction in the CH/pi interaction, whereas electrostatic interaction is the major source of attraction in the hydrogen bond. The orientation dependence of the interaction energy of the typical CH/pi interaction energy is very small, whereas the hydrogen bond has strong directionality. The weak directionality suggests that the hydrogen atom of the interacting C-H bond is not essential for the attraction and that the typical CH/pi interaction does not play critical roles in determining the molecular orientation in molecular assemblies.  相似文献   

15.
The alkene-containing phosphines PPh((CH2)(n)CH=CH2)2)2 are prepared from PPhH(2), n-BuLi, and the corresponding bromoalkenes (1:2:2), and combined with the platinum tetrahydrothiophene complex [Pt(mu-Cl)(C(6)F(5))(S(CH2CH2(-))2)]2 to give the square-planar adducts trans-(Cl)(C(6)F(5))Pt(PPh((CH2)(n)CH=CH2)2)2 (11, 93-73%; n=a, 2; b, 3; c, 4; d, 5; e, 6; f, 8). Ring-closing metatheses with Grubbs' catalyst (2) are studied. With, two isomers of trans-(Cl)(C6F5)[formula: see text](14)Ph)(15e) are isolated after hydrogenation. Both form via dimacrocyclization between the trans-phosphine ligands, but differ in the dispositions of the PPh rings (syn, 31%; anti, 7%). The alternative intraligand metathesis product trans-(Cl)(C6F5)[formula: see text](14)Ph)2 (16e) is independently prepared by (i) protecting 4e as a borane adduct, H(3)B.PPh((CH(2))(6)CH=CH2)2, (ii) cyclization with 2 and hydrogenation to give H(3)B[formula: see text] (14), (iii) deprotection and reaction with 12. The sample derived from 11e contains < or = 2% 16e; mass spectra suggest that the other products are dimers or oligomers. The structures of syn-15e, anti-15e and 16e are verified crystallographically, and the macrocycle conformations analyzed. As expected from the (CH(2))(n) segment length, 11a undergoes intraligand metathesis to give (Z,Z)-trans-(Cl)(C6F5)Pt[formula: see text]CH2)2)2 (86%), as confirmed by a crystal structure of the hydrogenation product. Although 11b does not yield tractable products, 11c gives syn-(E,E)-trans-(Cl)(C6F5[formula:see text](21%). This structure, and that of the hydrogenation product (syn-15c; 95%), are verified crystallographically. Analogous sequences with 11d,f give syn-15d (5 and 14% overall).  相似文献   

16.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2000,39(12):2445-2451
Treatment of the complex [W(CO)5[PPh2(CS2Me)]] (2) with [Pd(PPh3)4] (1) affords binuclear complexes such as anti-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (3), syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (4), and trans-[W(CO)4(PPh3)2] (5). In 3 and 4, respectively, the W and Pd atoms are in anti and syn configurations with respect to the P-CS2 bond of the diphenyl(dithiomethoxycarbonyl)phosphine ligand, PPh2(CS2Me). Complex 3 undergoes extensive rearrangement in CHCl3 at room temperature by transfer of a PPh3 ligand from Pd to W, eliminating [W(CO)5(PPh3)] (7), while the PPh2CS2Me ligand transfers from W to Pd to give [[(Ph3P)Pd[mu-eta 1,eta 2-(CS2Me)PPh2]]2] (6). In complex 6, the [Pd(PPh3)] fragments are held together by two bridging PPh2(CS2Me) ligands. Each PPh2(CS2Me) ligand is pi-bonded to one Pd atom through the C=S linkage and sigma-bonded to the other Pd through the phosphorus atom, resulting in a six-membered ring. Treatment of Pd(PPh3)4 with [W(CO)5[PPh2[CS2(CH2)nCN]]] (n = 1, 8a; n = 2, 8b) in CH2Cl2 affords syn-[(Ph3P)2Pd[mu-eta 1,eta 2-[CS2(CH2)nCN]PPh2]W(CO)5] (n = 1, 9a; n = 2, 9b). Similar configurational products syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2R)PPh2]W(CO)5] (R = C2H5, C3H5, C2H4OH, C3H6CN, 11a-d) are synthesized by the reaction of Pd(PPh3)4 with [W(CO)5[PPh2(CS2R)]] (R = C2H5, C3H5, C2H4OH, C3H6CN, 10a-d). Although complexes 11a-d have the same configuration as 9a,b, the SR group is oriented away from Pd in the former and near Pd in the latter. In these complexes, the diphenyl(dithioalkoxycarbonyl)phosphine ligand is bound to the two metals through the C=S pi-bonding and to phosphorus through the sigma-bonding. All of the complexes are identified by spectroscopic methods, and the structures of complexes 3, 6, 9a, and 11d are determined by single-crystal X-ray diffraction. Complexes 3, 9, and 11d crystallize in the triclinic space group P1 with Z = 2, whereas 6 belongs to the monoclinic space group P2/c with Z = 4. The cell dimensions are as follows: for 3, a = 10.920(3) A, b = 14.707(5) A, c = 16.654(5) A, alpha = 99.98(3) degrees, beta = 93.75(3) degrees, gamma = 99.44(3) degrees; for 6, a = 15.106(3) A, b = 9.848(3) A, c = 20.528(4) A, beta = 104.85(2) degrees; for 9a, a = 11.125(3) A, b = 14.089(4) A, c = 17.947(7) A, alpha = 80.13(3) degrees, beta = 80.39(3) degrees, gamma = 89.76(2) degrees; for 11d, a = 11.692(3) A, b = 13.602(9) A, c = 18.471(10) A, alpha = 81.29(5) degrees, beta = 80.88(3) degrees, gamma = 88.82(1) degrees.  相似文献   

17.
A series of sterically hindered 4-(N-R-salicylaldimine)-2,6-diphenylphenols (X), where R=H (1), 3-CH3 (2), 5-CH3 (3), 3-OCH3 (4), 4-OCH3 (5), 5-OCH3 (6), 3-tBu (7), 5-tBu (8), 3,5-tBu2(9) and 5,6-benzo(10), were synthesized and their structure as well as redox behavior studied by analytical, spectroscopic [1H, (13C) NMR, IR, UV-vis and mass spectrometry] and cyclic voltammetric (CV) techniques. Single crystal X-ray diffraction studies of 7 evidenced its existence as non-planar enol-imine tautomer structure, in which the phenol ring of the molecule is twisted around C-N single bond by 21.5(2) degrees. The packing structure of 7 is stabilized by C-H...pi(Ph) and O...O and C...O intermolecular short contact interactions. The CV of X display rate is dependent on irreversible and quasi-reversible redox waves in the anodic and cathodic regions due to oxidation and reduction of phenolic and iminic groups, respectively. As evidenced by ESR and UV-vis study, chemical oxidation of X by PbO2 and (NH4)2Ce(NO3)6 in MeCN and CHCl3 generates stable phenoxyl radicals [(g approximately 2.005 and lambda approximately 450 nm (1600-8200 M(-1) cm(-1))].  相似文献   

18.
Ruthenium complexes bearing ethylbis(2-pyridylethyl)amine (ebpea), which has flexible -C(2)H(4)- arms between the amine and the pyridyl groups and coordinates to a metal center in facial and meridional modes, have been synthesized and characterized. Three trichloro complexes, fac-[Ru(III)Cl(3)(ebpea)] (fac-[1]), mer-[Ru(III)Cl(3)(ebpea)] (mer-[1]), and mer-[Ru(II)Cl(3){η(2)-N(C(2)H(5))(C(2)H(4)py)═CH-CH(2)py}] (mer-[2]), were synthesized using the Ru blue solution. Formation of mer-[2] proceeded via a C-H activation of the CH(2) group next to the amine nitrogen atom of the ethylene arm. Reduction reactions of fac- and mer-[1] afforded a triacetonitrile complex mer-[Ru(II)(CH(3)CN)(3)(ebpea)](PF(6))(2) (mer-[3](PF(6))(2)). Five nitrosyl complexes fac-[RuX(2)(NO)(ebpea)]PF(6) (X = Cl for fac-[4]PF(6); X = ONO(2) for fac-[5]PF(6)) and mer-[RuXY(NO)(ebpea)]PF(6) (X = Cl, Y = Cl for mer-[4]PF(6); X = Cl, Y = CH(3)O for mer-[6]PF(6); X = Cl, Y = OH for mer-[7]PF(6)) were synthesized and characterized by X-ray crystallography. A reaction of mer-[2] in H(2)O-C(2)H(5)OH at room temperature afforded mer-[1]. Oxidation of C(2)H(5)OH in H(2)O-C(2)H(5)OH and i-C(3)H(7)OH in H(2)O-i-C(3)H(7)OH to acetaldehyde and acetone by mer-[2] under stirring at room temperature occurred with formation of mer-[1]. Alternative C-H activation of the CH(2) group occurred next to the pyridyl group, and formation of a C-N bond between the CH moiety and the nitrosyl ligand afforded a nitroso complex [Ru(II)(N(3))(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([8]) in reactions of nitrosyl complexes with sodium azide in methanol, and reaction of [8] with hydrochloric acid afforded a corresponding chloronitroso complex [Ru(II)Cl(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([9]).  相似文献   

19.
An in-depth analysis of a set of 21 layered structures of metallic pseudopolymorphs of general formulation, beta'-(BEDT-TTF)(4) x (guest)(n) x [Re(6)Q(6)Cl(8)], (BEDT-TTF=bis-ethylenedithiotetrathiafulvalene; Q = S, Se; guest = H(2)O, 1,4-dioxane, THF, CCl(4), C(2)H(5)OH, CHCl(3), CH(2)ClI, CH(2)ClBr, CH(2)Cl(2), CH(2)OH-CH(2)OH, C(5)H(5)N, CH(3)COCH(3), 2-hydroxy-tetrahydrofuran, CH(3)CN, CS(2), C(6)H(6)), with diverse low-temperature behaviors, which differ solely by the nature of the cosolvent molecule selectively included during the electrocrystallization process, reveals a precise set of weak HO-H...Cl-mu-Re, (C-H)(BEDT-TTF)...Cl-mu-Re, C-H...O(guest), (C-H)(guest)...Cl-mu-Re hydrogen bonds at the organic-inorganic interface, none of which dominates any of the others and whose balance is adjusted upon substitution of one guest molecule by another. The electronic structure of the host adjusts to the weak perturbation imposed by exchanging the guest molecules and by balancing the former interfacial interactions; this correlates to a net activation of up to 0.1 eV of the energy of the HOMO level of one of the two donors, while keeping the pattern of HOMO-HOMO intermolecular interactions in the donor layer essentially unaltered. It is suggested that this controls the stability of the metallic state at low temperature or the occurrence of a metal-to-insulator phase transition for particular guests along the series. It is concluded that by allowing for numerous tiny modifications at the organic-inorganic interface within a single, robust host structure, one sees a concerted, inherently weak structural response of the system that is proportional to the magnitude of the underlying, equally weak activation of the HOMO energy of a fraction of the pi-donor molecules within the slabs; this has a sizeable influence on the macroscopic transport properties of the system.  相似文献   

20.
The (benzophenone imine)platinum(II) compounds trans-[PtCl2(Ph2C=NH)(RR'SO)] [R, R'=Me, Me (2); n-Pr, n-Pr (3); (CH2)4 (4); Me, Ph (5); Me, p-MeC6H4 (6)] were prepared by the reaction of Ph2C=NH with K[PtCl3(RR'SO)], obtained in situ from K2[PtCl4] and the corresponding sulfoxide, giving 2-6 as well as cis-[PtCl2(Ph2C=NH)2] (1) as a minor product. The complexes were characterized by 1H, 13C, and 195Pt NMR and IR spectroscopy, electrospray ionization mass spectrometry, and C, H, and N elemental analysis. The X-ray crystallography of 1 enables confirmation of the cis configuration of the complex, while in 2 and 4.1/2CHCl3, the imine and sulfoxide ligands are mutually trans. The solid-state structure of 4.1/2CHCl3 consists of two dimeric Pt moieties representing a rather weak Pt...Pt interaction. The dimeric architecture of 4.1/2CHCl3 is enhanced by the hydrogen bonding between imine H atoms and O atoms. The orthometalation of 1 and 2-6 proceeds both in the solid phase and in a toluene suspension, leading to the formation of [PtCl{Ph(C6H4)C=NH}(Ph2C=NH)] (7) and [PtCl{Ph(C6H4)C=NH}(RR'SO)] (8-12), respectively, isolated in nearly quantitative yields. Complexes 8-12 are emissive at room temperature both in solution (lambdaemmax approximately 535 nm) and in the solid state (lambdaemmax 560-610 nm), with excited-state lifetimes of ca. 300-600 ns, representing a new family of PtII-based luminescent complexes. Compounds 8 and 10 have been characterized by X-ray analysis, confirming the square-planar coordination geometry of the metal center with the almost planar platinacycles. In 8, the asymmetric unit contains two independent Pt molecules, while in 10, it includes four Pt molecules linked by the intermolecular hydrogen-bonding network between the NH group and Cl atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号