首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anistropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monlayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir-Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a T ln(βT) dependence. The T ln (βT) dependence of magnetization has been predicted from spinwave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of βT<1.  相似文献   

2.
We have investigated the low energy nuclear spin excitations in NdMn2Si2 and NdMn2Ge2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2Si2 and NdMn2Ge2. Our results are consistent with those of magnetization and recent neutron diffraction measurements.  相似文献   

3.
兰司  吴桢舵  王循理 《中国物理 B》2017,26(1):17104-017104
Amorphous materials are ubiquitous and widely used in human society, yet their structures are far from being fully understood. Metallic glasses, a new class of amorphous materials, have attracted a great deal of interests due to their exceptional properties. In recent years, our understanding of metallic glasses increases dramatically, thanks to the development of advanced instrumentation, such as in situ x-ray and neutron scattering. In this article, we provide a brief review of recent progress in study of the structure of metallic glasses. In particular, we will emphasize, from the scattering perspective, the multiscale structures of metallic glasses, i.e., short-to-medium range atomic packing, and phase transitions in the supercooled liquid region, e.g., crystallization and liquid-to-liquid phase transition. We will also discuss, based on the understanding of their structures and phase stability, the mechanical and magnetic properties of metallic glasses.  相似文献   

4.
The structural and magnetic behavior of the perovskite insulator La0.9Ca0.1MnO3 were studied as a function of temperature from 15 to 300 K by neutron powder diffraction. Although this compound shows an anomalous response of the lattice parameters around Tc (150 K), the behavior of the oxygen/manganese Debye-Waller factors is in clear contrast to its “colossal magnetoresistance” (CMR) counterpart La0.65Ca0.35MnO3. We speculate that the difference is intimately associated with the metal-insulator transition in the latter compound.  相似文献   

5.
The crystal structure of quartz (SiO2) was analyzed by neutron powder diffraction at several temperatures in the range of 10-250 K. The temperature dependence of the structure parameters was consistent with our previous results obtained using single-crystal X-ray diffraction above room temperature. Atomic displacements are order parameters for displacive structural phase transitions. The temperature evolution of Si atomic displacement in quartz was analyzed by studying the quantum expansion of the Landau potential. The expansion was found to accurately describe the evolution of the atomic displacement over the entire temperature interval. To the best of our knowledge, such a verification of atomic displacement is the first of its kind. A proportional relationship between spontaneous strain and the square of the atomic displacement was observed over the entire temperature interval. The validity of the obtained characteristic temperature for the quantum effect is discussed and compared with the results of previous Raman-scattering studies.  相似文献   

6.
A simple microscopic model of charge ordering in the NaxCoO2 system is presented. The model takes into account the interplane interactions between the ordered Na ions and d electrons from the CoO2 layers as well as the nearest-neighbor intraplane Coulomb interactions between d electrons. It is shown that a driving force of charge ordering in the CoO2 layers is the interplane interaction that alone is able to describe various types of inhomogeneous charge ordering (e.g., the striped phases) as well as to predict correctly the conducting properties of the system.  相似文献   

7.
我们研究了二维.J1-J2模型中三种四量子比特的热纠缠特性,结果发现,临界温度基本上随挫变参量α的增大而减小.我们也发现,通过选择合适的挫变参量α可以制备最大纠缠态.  相似文献   

8.
Small angle neutron scattering (SANS) is a well-established technique for investigating the behavior of confined binary liquid solutions, as it can probe the correlation length and susceptibility in pores on length scales 1 – 100 nm. We applied SANS to explore the influence of confinement on critical behavior of an individual fluid carbon dioxide (CO2) in a highly porous aerogel. The results demonstrate that quenched disorder induced by aerogel significantly depresses density fluctuations. Despite the negligible volume occupied by aerogel (< 4%), the macroscopic phase separation of confined CO2 into coexisting liquid and gaseous phases is suppressed and below the critical temperature of the bulk fluid frozen methastable microdomains are formed. Experimental data show that critical adsorption is as important as the effect of confinement in defining the behavior of confined fluids.  相似文献   

9.
The aim of this paper is to present the analysis of influence of defects in 1D photonic crystal (PC) on the density of states and simultaneously spontaneous emission, in both spatial and frequency domains. In our investigations we use an analytic model of 1D PC with defects. Our analysis reveals how presence of a defect causes a defect mode to appear. We show that a defect in 1D PC has local character, being negligible in regions of PC situated far from the defected elementary cell. We also analyze the effect of multiple defects, which lead to photonic band gap splitting.  相似文献   

10.
Ozan S. Sarıyer 《哲学杂志》2019,99(14):1787-1824
Phase diagram, critical properties and thermodynamic functions of the two-dimensional field-free quantum-spin-1/2 XXZ model has been calculated globally using a numerical renormalisation group theory. The nearest-neighbour spin-spin correlations and entanglement properties, as well as internal energy and specific heat are calculated globally at all temperatures for the whole range of exchange interaction anisotropy, from XY limit to Ising limits, for both antiferromagnetic and ferromagnetic cases. We show that there exists long-range (quasi-long-range) order at low-temperatures, and the low-lying excitations are gapped (gapless) in the Ising-like easy-axis (XY-like easy-plane) regime. Besides, we identify quantum phase transitions at zero-temperature.  相似文献   

11.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

12.
Neutron and electron diffraction, electrical transport and magnetic measurements have been carried out on a newly synthesized electron doped Sr1-xCe x MnO3 (x = 0.1, 0.2, 0.3 and 0.4) system. For x=0.1, while cooling, it undergoes a first-order metal-insulator transition at 315 K which is associated with a structural transition from cubic (Pm3m) to tetragonal (I4/mcm) due to Jahn-Teller ordering () which stabilizes a chain like (C-type) antiferromagnetic ground state with . The antiferromagnetic insulator state is insensitive to an applied magnetic field of 7 T. With increase of x, while the nuclear structure at room temperature for x=0.2 and 0.3 remains tetragonal, for x=0.4 it becomes orthorhombic (Imma) where the doping electrons seem to occupy mainly the d x2-y2 symmetry. Further, the JT distortion and the antiferromagnetic interactions decrease with doping and a small negative magnetoresistance appears for . Magnetic measurements show that the dilution of antiferromagnetic interaction results into a spin glass like behaviour at low temperature for the samples with x=0.3 and 0.4. This behaviour is in contrast with the CMR properties of calcium based electron doped systems and hole doped manganites. The stability of C-type antiferromagnetic ordering in the electron doped system with large A-site cationic size may be responsible for the absence of double exchange ferromagnetism and CMR effect. Received 10 September 1999  相似文献   

13.
We present a structural investigation of the family of quasi-one-dimensional (quasi-1D) conductors, which exhibit intriguing charge transport properties where, for x small, the conductivity exhibits a crossover from a semiconducting to a metallic like regime when the temperature decreases. In these materials the double zig-zag chains, together with the diphosphate groups, delimit channels which are partially filled with the ions. It is found, from an X-ray diffuse scattering investigation, that at room temperature the ions are locally ordered on a lattice of well-defined sites in the channel direction and not ordered between neighboring channels. These ions form 1D incommensurate concentration waves whose periodicity depends on the stoichiometry. In upon cooling, the intrachannel order increases significantly, and an interchannel order between the 1D concentration waves develops. But, probably because of kinetic effects, no tridimensional (3D) long range order of the ions is achieved at low temperature. The 3D low-temperature local order has been determined and it is found that the phase shift between the concentration waves minimizes their Coulomb repulsions. This local order is increasingly reduced as the Cs concentration diminishes. We interpret the intriguing features of the electrical conductivity in relationship with the thermal evolution of the Cs ordering effects. We suggest that in , for x small, a localization-delocalization transition of the Anderson type occurs due to the thermal variation of the Cs disorder. When x increases, the enhancement of the disorder leads to a localization of the electronic wave function in the whole temperature range measured. Finally, and probably because of the disorder, no charge density wave instability is revealed by our X-ray diffuse scattering investigation. Received: 10 October 1997 / Received in final form: 11 December 1997 / Accepted: 16 December 1997  相似文献   

14.
We study the dynamic phase transitions and present the dynamic phase diagrams of the spin-1/2 Ising system under the presence of a time-varying (sinusoidal) external magnetic field within the path probability method (PPM) of Kikuchi and we observe that the PPM gives exactly the same result as with the Glauber-type stochastic dynamics based on the mean-field theory (DMFT). We also investigate the influence of the rate constant on the dynamic phase diagrams in detail and five new and interesting dynamic phase diagrams are found. We notice that the derivation of the dynamic equations by using the PPM is more clear and easier than within the DMFT and the Glauber-type stochastic dynamics based on the effective-field theory (DEFT). The advantages and disadvantages of the PPM over the DMFT and DEFT are also discussed.  相似文献   

15.
The doping of the manganese site by iridium (up to 15%) in the small A cation manganites Pr1-xCaxMnO3 ( 0.4 ? x ? 0.8), has been investigated as a new method to suppress charge-ordering and induce CMR effects. Ir doping leads to ferromagnetism and to insulator to metal transitions, with high transition temperatures reaching 180 K and CMR ratio in 7 T as large as 104. The efficiency with which iridium induces ferromagnetism and CMR is compared to previous results obtained with other substitutions (Ru, Rh, Ni, Cr...). The ionic radius of the foreign cations and their mixed-valencies are found to be the main parameters governing the ability to collapse the charge-ordered state. Received 14 May 2001 and Received in final form 2 July 2001  相似文献   

16.
Optical phonon modes, confined in CdSxSe1−x nanocrystal (NC) quantum dots (≈2 nm in radius) grown in a glass matrix by the melting‐nucleation method, were studied by resonant Raman scattering (RRS) spectroscopy and theoretical modeling. The formation of nanocrystalline quantum dots (QDs) is evidenced by the observation of absorption peaks and theoretically expected resonance bands in the RRS excitation spectra. This system, a ternary alloy, offers the possibility to investigate the interplay between the effects of phonon localization by disorder and phonon confinement by the NC/matrix interface. Based on the concept of propagating optical phonons, which is accepted for two‐mode pseudo‐binary alloys in their bulk form, we extended the continuous lattice dynamics model, which has successfully been used for nearly spherical NCs of binary materials, to the present case. After determining the alloy composition for NCs (that was evaluated with only 2–3% uncertainty using the bulk longitudinal optical phonon wavenumbers) and the NC size (using atomic force microscopy and optical absorption data), the experimental RRS spectra were described rather well by this theory, including the line shape and polarization dependence of the scattering intensity. Even though the presence of a compressive strain in the NCs (introduced by the matrix) masks the expected downward shift owing to the phonons' spatial quantization, the asymmetric broadening of both Raman peaks is similar to that characteristic of NCs of pure binary materials. Although with some caution, we suggest that both CdSe‐like and CdS‐like optical phonon modes indeed are propagating within the NC size unless the alloy is considerably heterogeneous. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Hawking radiation in d = 4 is regarded as a well understood quantum theoretical feature of Black Holes or of other geometric backgrounds with an event horizon. On the other hand, the dilaton theory, emerging after spherical reduction, and generalized dilaton theories only during the last years became the subject of numerous studies which unveiled a surprisingly difficult situation. Recently we have found some solution to the problem of Hawking flux in spherically reduced gravity which has the merit of using a minimal input. It leads to exact cancellation of negative contributions to this radiative flux, encountered in other approaches at infinity, so that our result asymptotically coincides with the one of minimally coupled scalars. The use of an integrated action is avoided — although we have been able to present also that quantity in a closed expression. This short review also summarizes and critically discusses recent activities in this field, including the problem of “conformal frames” for the background and questions which seem to be open in our own approach as well as in others.  相似文献   

18.
Instantaneous measurements of temperature, equivalence ratio, and major species were performed along a one-dimensional probe volume using simultaneous Raman/Rayleigh scattering in an unconfined turbulent lean-premixed swirling methane/air flame. Temperature was determined from Rayleigh scattering and the major species, CO2, O2, N2, CH4, H2O, and H2 from Raman scattering. Effective Rayleigh cross-sections were corrected using the local chemical composition obtained from Raman scattering. These experiments were conducted to investigate the compositional structure of a lean-premixed swirling flame in detail and to complement previous measurements of the underlying flow field. The flame was classified within a revised regime diagram at the cross-over between corrugated flames and thin reaction zones. Instantaneous temperature profiles varied significantly showing shapes ranging from laminar-like flamelets to mixing between reacted fluid elements and secondary air. Different thermo-kinetic states could be assigned to the inner and outer recirculation zones and to the inner and outer mixing layers. Linked to published velocity data of this flame, the present multi-scalar data are useful for validation of numerical simulations.  相似文献   

19.
We report specific heat and neutron diffraction measurements of seven samples in the solid solution system UxLa1-xS. All samples have the simple fcc NaCl crystal structure. Both specific heat and neutron diffraction confirm the suggestion from the earlier magnetic measurements that the ferromagnetism disappears abruptly at 0.57. Near there is a doubling of the electronic contribution to the specific heat, as compared to the value of 23 mJ mol-1K-2 in pure US. Around the widths of the nuclear Bragg peaks show a considerable broadening, as well as anomalies in the mean lattice parameter, as compared to those expected from Vegard's law. A preliminary analysis suggests this broadening may be due to a loss of long range lattice order near . However, these changes are independent of temperature, so that further experiments are necessary before they can be associated with the changes in magnetic behavior at . Received 18 September 1998  相似文献   

20.
应用经典轨迹方法,采用辛算法数值求解激光场中的一维和三维氢分子离子(H2 )的Hamilton正则方程,得到氢分子离子在激光场作用下的经典轨迹,并比较分析氢分子离子一维模型与三维模型的存活、解离、电离和库仑爆炸等动力学行为,以及电子的运动情况的相似之处.数值结果表明,采用一维模型能近似定性反映氢分子离子的动力学行为,并且简便可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号