首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we present an approach for seeking exact solutions with coefficient function forms of conformable fractional partial differential equations. By a combination of an under-determined fractional transformation and the Jacobi elliptic equation, exact solutions with coefficient function forms can be obtained for fractional partial differential equations. The innovation point of the present approach lies in two aspects. One is the fractional transformation, which involve the traveling wave transformations used by many articles as special cases. The other is that more general exact solutions with coefficient function forms can be found, and traveling wave solutions with constants coefficients are only special cases of our results. As of applications, we apply this method to the space-time fractional (2+1)-dimensional dispersive long wave equations and the time fractional Bogoyavlenskii equations. As a result, some exact solutions with coefficient function forms for the two equations are successfully found.  相似文献   

2.
Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.  相似文献   

3.
In this Letter, by introducing He's polynomials in the correct functional, we propose a new fractional variational iteration method to solve nonlinear time-fractional partial differential equations involving Jumarie's modified Riemann-Liouville derivative. Several examples have been solved to illustrate the proposed method is quite effective and convenient for solving kinds of nonlinear fractional order problems.  相似文献   

4.
刘金存  侯国林 《中国物理 B》2010,19(11):110305-110305
In this paper,the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed.The fractional derivative is described in the Caputo sense.The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial.An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.  相似文献   

5.
Ji-Huan He 《Physics letters. A》2011,375(38):3362-3364
This Letter compares the classical variational iteration method with the fractional variational iteration method. The fractional complex transform is introduced to convert a fractional differential equation to its differential partner, so that its variational iteration algorithm can be simply constructed.  相似文献   

6.
In this Letter, approximate analytical solutions of systems of Fractional Differential Equations (FDEs) are derived by the Homotopy-Perturbation Method (HPM). The fractional derivatives are described in the Caputo sense. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. Numerical results reveal that HPM is very effective and simple for obtaining approximate solutions of nonlinear systems of FDEs.  相似文献   

7.
葛红霞  刘永庆  程荣军 《中国物理 B》2012,21(1):10206-010206
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α (0<α ≤1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.  相似文献   

8.
Fractional variational iteration method and its application   总被引:1,自引:0,他引:1  
Guo-cheng Wu 《Physics letters. A》2010,374(25):2506-411
Fractional differential equations have been investigated by variational iteration method. However, the previous works avoid the term of fractional derivative and handle them as a restricted variation. We propose herein a fractional variational iteration method with modified Riemann Liouville derivative which is more efficient to solve the fractional differential equations.  相似文献   

9.
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odibat to obtaining solutions of linear and nonlinear fractional diffusion and wave equations. The fractional derivative is described in the Caputo sense. Some illustrative examples are given, revealing the effectiveness and convenience of the method.  相似文献   

10.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   

11.
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology.Such problems are presented as nonlinear differential–difference equations.The proposed method is based on the Laplace transform with the homotopy analysis method(HAM).This method is a powerful tool for solving a large amount of problems.This technique provides a series of functions which may converge to the exact solution of the problem.A good agreement between the obtained solution and some well-known results is obtained.  相似文献   

12.
吴国成 《中国物理 B》2012,(12):118-122
<正>The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way.Some diffusion models with fractional derivatives are investigated analytically,and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.  相似文献   

13.
By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie?s modified Riemann-Liouville derivative. By means of this method, the space-time fractional Whitham-Broer-Kaup and generalized Hirota-Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations.  相似文献   

14.
赵国忠  蔚喜军  徐云  朱江 《中国物理 B》2010,19(7):70203-070203
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics.This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional.Using this method,a rapid convergent sequence is produced which converges to the exact solutions of the problem.Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.  相似文献   

15.
Recently Adomian method was used to solve various kinds of heat-like and wave-like equations. In this Letter, an alternative approach called the variational iteration method is presented to overcome the demerit of complex calculation of Adomian polynomial. Some examples are given to show the reliability and the efficiency of the variational iteration method.  相似文献   

16.
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved(G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.  相似文献   

17.
This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.  相似文献   

18.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

19.
An improved algorithm is devised for using Fan sub-equation method to solve Wick-type stochastic partial differential equations. Applying the improved algorithm to the Wick-type generalized stochastic KdV equation, we obtain more general Jacobi and Weierstrass elliptic function solutions, hyperbolic and trigonometric function solutions, exponential function solutions and rational solutions.  相似文献   

20.
Using functional derivative technique in quantum field theory, the algebraic dynamics approach for solution of ordinary differential evolution equations was generalized to treat partial differential evolution equations. The partial differential evolution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynamics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new numerical algorithm—algebraic dynamics algorithm was proposed for partial differential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experiments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically. Supported by the National Natural Science Foundation of China (Grant Nos. 10375039, 10775100 and 90503008), the Doctoral Program Foundation of the Ministry of Education of China, and the Center of Nuclear Physics of HIRFL of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号