首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work describes the synthesis of GO, rGO and their nanocomposites with PEO. GO and rGO were prepared by the modified Hummers method and in-situ reduction of GO utilizing green reductant L (+) Ascorbic acid. The nanocomposites were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Thermogravimetric Analysis (TGA), and Universal Testing Machine (UTM). FT-IR and XRD confirmed the synthesis of GO and rGO. FE-SEM confirmed the uniformly exfoliated GO and rGO nanosheets in the polymer matrix. Hydrogen bonding was the main interaction mechanism for GO with PEO while no interaction was detected by FT-IR for rGO. Enhanced thermal stability was observed for both GO/PEO and rGO/PEO nanocomposites. The mechanical analysis showed an increase in Young's modulus, tensile strength, and elongation at break for GO/PEO nanocomposites, which is attributed to the homogeneous dispersion and hydrophilic hydrogen bonding interaction of GO with PEO.  相似文献   

2.
《Current Applied Physics》2014,14(2):215-221
In this study, vanadium pentoxide (V2O5) nanowires (NWs) with a diameter of 100–200 nm and a length of up to several micrometers as cathode for lithium ion batteries are synthesize using an electrospinning method. The reduced graphene oxide (rGO) and V2O5 NWs (GVO) composites are form by wet mixing the electrospun V2O5 NWs and rGO. Surface morphologies, microstructure and elemental mapping, and chemical bonding states of the composites are characterize. The initial and 60 cycles discharge capacities of GVO composite composed of 1 wt% rGO show up to 225 mAh g−1 and 125 mAh g−1, even higher than pure V2O5 NWs, when the lithium ion battery cycled between 2.0 and 4.0 V with a rate of 0.2 C, because of highly conductive rGO. The GVO composite could be promising as a high performance cathode for lithium ion batteries.  相似文献   

3.
李慧  尚艳霞  张早娣  王泽松  张瑞  付德君 《中国物理 B》2015,24(1):18502-018502
We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions,followed by annealing at 950?C in vacuum.Raman spectroscopy reveals IG/I2Dvalues varying from 1.55 to 2.38 depending on energy and dose of the cluster ions,indicating formation of multilayer graphene.The measurements show that the samples with more graphene layers have fewer defects.This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil,though nonlinear damage and smoothing effects also play a role.Cluster ion implantation overcomes the solubility limit of carbon in Cu,providing a technique for multilayer graphene synthesis.  相似文献   

4.
《Current Applied Physics》2014,14(5):738-743
In this study, the reduced graphene oxide field-effect transistor (rGO FET) with indium tin oxide (ITO) extended gate electrode was demonstrated as a transducer for proton sensing application. In this structure, the proton sensing area of the ITO extended gate electrode is isolated from the active area of the rGO FET. The proton sensing properties based on the rGO FET transducer were analyzed. The rGO FET device with encapsulation by a tetratetracontane (TTC) layer showed good stability in electrolytic solutions. The device showed an ambipolar behavior with shifts in Dirac point as the pH of the electrolyte is varied. The pH sensitivity based on the Dirac point shift as a sensing parameter was about 43–50 mV/pH for a wide range of pH values from 2 to 12. The ITO extended gate rGO FET may be considered a potential transducer for sensing of H+ in electrolytes. Its sensing area can be modified further for various ions sensing applications.  相似文献   

5.
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015–671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.  相似文献   

6.
The novel N-CeO2 nanoparticles decorated on reduced graphene oxide (N-CeO2@rGO) composite has been synthesized by sonochemical method. The characterization of as prepared nanocomposite was intensely performed by UV–Vis, FT-IR, EDX, FE-SEM, HR-TEM, XRD, and TGA analysis. The synthesized nanomaterial was further investigated for its selective and sensitive sensing of paracetamol (PM) based on a N-CeO2@rGO modified glassy carbon electrode. A distinct and improved reversible redox peak of PM is obtained at N-CeO2@rGO nanocomposite compared to the electrodes modified with N-CeO2 and rGO. It displays a very good performance with a wide linear range of 0.05–0.600 μM, a very low detection limit of 0.0098 μM (S/N = 3), a high sensitivity of 268 μA µM−1 cm−2 and short response time (<3 s). Also, the fabricated sensor shows a good sensibleness for the detection of PM in various tablet samples.  相似文献   

7.
Reduced graphene oxide, RGO (also called chemically modified graphene, CMG) was synthesized by a simple hydrothermal method, with graphite oxide (GO), prepared by the modified Hummers method, served as the raw material. Structural and morphological studies indicate the degree of reduction is dependent on the temperature, which is also verified by Raman analysis. The variation in interlayer distance and the intensity ratio of the D to G Raman modes (ID/IG) indicates higher reaction temperature can accelerate the reduction of GO. The conductivity also varies with the degree of reduction, as verified by electrochemical analyzer. Moreover, the reaction process affects organic functional groups, the mechanism during the reaction process is discussed.  相似文献   

8.
Sn nanoparticles-stabilized reduced graphene oxide (RGO) nanodiscs were synthesized by a sonochemical method using SnCl2 and graphene oxide (GO) nanosheets as precursors in a polyol medium. TEM and XPS were used to characterize the Sn-stabilized RGO nanodiscs.  相似文献   

9.
《Current Applied Physics》2020,20(2):304-309
The NiCo2S4 nanospheres arrayed on the surface of reduced graphene oxide (rGO) was fabricated via one-step hydrothermal method. The effect of initial feeding mass of Ni(NO3)2·6H2O and Co(NO3)2·6H2O to rGO on the microstructure and electrochemical performance of the as-prepared composites was studied. The results indicated that the specific capacitances of the composites were first increased and then reduced due to the aggregation of NiCo2S4 nanospheres. NiCo2S4 nanospheres/rGO composites exhibited a remarkable specific capacitance of 1406 F/g and excellent cyclic stability of 82.36% at the current density of 1 A/g, which were better than those of individual NiCo2S4 (792 F/g and 64.77%) counterpart. These results showed that the as-prepared NiCo2S4 nanospheres/rGO composites were outstanding candidate for electrode material of supercapacitors.  相似文献   

10.
The reduced graphene oxide (rGO) incorporated ZnO thin films were fabricated by dip-coating method. The Raman and FT-IR spectra of 0.075 wt% incorporated composite film showed reduction of GO in composite film. The transmittanceProd. Type: FTP spectra have shown that rGO incorporation increase the visible light absorption of ZnO thin film while the calculated band gaps of samples were decreased from 3.28 to 3.25 eV by increasing the rGO content. The linear trend of IV curve suggests an ohmic contact between ZnO and rGO. Besides, it was found that by increasing the rGO content, the electrical resistivity was decreased from 4.32×102 Ω cm for pure ZnO film to 2.4×101 Ω cm for 0.225 wt% rGO incorporated composite film. The composite photodetectors not only possessed a desirable UV photosensitivity, but also the response time of optimum sample containing 0.075 wt% rGO was reduced to about one-half of pure ZnO thin film. Also, the calculated signal to noise (SNR) showed that highly conductive rGO in composite thin films facilitate the carrier transportation by removing the trapping centers. The mechanism of photoresponsivity improvement of composite thin films was proposed by carrier transportation process.  相似文献   

11.
《Current Applied Physics》2014,14(5):725-730
The reduced graphene oxide (RGO)/carbon double-coated LiMn0.9Mg0.1PO4 (LMP) nanoplates are introduced as a cathode material for Li-ion batteries with excellent rate capability. The double coating of RGO and carbon simultaneously brings the unique advantages of conformal carbon layer on each particle surface, and soft RGO sheets connecting the nanoplates to each other, thereby provides easy conduction pathways for the whole LMP aggregates. In particular, the simple self-assembly process driven by the electrostatic interactions enables conducting RGO sheets effectively to wrap the carbon-coated LMP, establishing three-dimensional RGO network. The RGO/C/LMP nanocomposites exhibit remarkably enhanced rate capability compared to the only C- or RGO-coated LMP, which is well explained by the reduced charge-transfer resistance achieved from electrochemical impedance spectroscopy.  相似文献   

12.
《Current Applied Physics》2018,18(8):859-863
An ultraviolet (UV) photodetector based on ZnO-reduced graphene oxide (ZnO-rGO) composites have been successfully fabricated. A pure ZnO photodetector was also fabricated by similar method. In comparison with the pure ZnO UV photodetector, the ZnO-rGO photodetector exhibits a much larger photocurrent and a better light-to-dark-current-ratio. The mechanism of photocurrent enhancement was investigated using I-V characteristics, photoluminescence (PL) spectra, transmittance spectra and time-dependent photocurrent analysis. Results show that the photocurrent enhancement of the ultraviolet photodetector is due to the improvement of the carrier lifetime, because the carrier recombination of ZnO were reduced by rGO. It provides a potential way to fabricate high-response UV photodetectors.  相似文献   

13.
Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.  相似文献   

14.
《Current Applied Physics》2015,15(9):953-957
Microwave-assisted reduced graphene oxide (MR-GO) layer was applied to hole extraction layer (HEL) of polymer solar cells (PSCs) and was compared with the widely used poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) in bulk hetero-junction (BHJ) solar cells. The power conversion efficiency (PCE) of 3.57% was achieved with the MR-GO layer, which is 21% higher than that of PSCs with the conventional PEDOT:PSS HEL material. This enhancement of PCE is mainly attributed to the increase of short-circuit current density originated from the hydrophobic surface of the MR-GO layer. The hydrophobic graphene oxide surface is believed to improve wetting property and physical contact of active blends. In addition, the MR-GO interfacial layer is found to show the excellent device stability in atmospheric condition. The PCE of conventional PEDOT:PSS based PSCs showed total degradation when the device was exposed to atmospheric condition for 1000 h without any encapsulation, while that of MR-GO based PSC showed over 85% of PCE.  相似文献   

15.
Carbon stripper foils having thicknesses in the range of 5–40 μg/cm2 have been prepared by a nitrogen ion beam sputtering method and their lifetimes have been tested in the Van de Graaff accelerator facility with 3.2 MeV, Ne+ ions. The foils of 21 μg/cm2 thickness had the longest mean lifetime of 1350.0 mC/cm2 (irradiation dose of 8.4×1018 atoms/cm2) which was 50 times longer than that of commercial foils. However, foils with other thicknesses had extremely short lifetimes similar to commercial foils. The nitrogen content of the foils of both long and short lifetimes has been determined using elastic scattering of 3 MeV α-particles.  相似文献   

16.
Noble metal particles have been embedded in semiconductors to improve photocatalysis efficiently, but the high cost made this approach difficult to apply widely in industry. Herein titanium dioxide/reduced graphene oxide (TiO2/rGO) nanowires in a core-shell structure were prepared. The physicochemical properties and photocatalytic performance of the specimen were characterized in comparison with TiO2 and TiO2/Pt nanowires. The rGO layer and Pt nanoparticles increased chemical states of the components, reduced bandgap energy of the nanowires, enhanced visible light absorption, improved conductance and capacitance significantly. The methylene blue as catalyzed by TiO2/Pt and TiO2/rGO nanowires was degraded to 7.9% and 8.4% in an hour, but retained 25.7% by the TiO2 nanowires. The properties and function of TiO2/rGO nanowires were close to those of TiO2/Pt nanowires, while the rGO price was much lower than that of Pt, which was of great significance for the photocatalytic application of TiO2 heterojunction materials in industry.  相似文献   

17.
Reduced graphene oxide (rGO) is deposited on glass substrate by dripping and sol-gel-coating methods giving rise to nanostructures. When in combination with thin films of SnO2, they form a heterostructure SnO2:2 at% Eu/rGO, which alters the surface electrical conductivity. SnO2 and rGO were also combined as a composite, with conductivity strongly affected by ultraviolet excitation, and shows persistent photoconductivity (PPC) phenomenon even very close to room temperature. Both sort o hybrid structures can be applied in electronic devices. The SnO2 films are deposited via chemical route by sol-gel or by a mixed technique that combines powders generated by drying the sol-gel solution with resistive evaporation of this powder. Resistivity measured as a function of temperature show that the SnO2:2 at%Eu sample behaves very similarly to the SnO2:2 at%Eu/rGO heterostructure sample, with the same energy level for the dominant defect, 172 meV, coincident with ionization of oxygen vacancies. Despite not changing the position of this level, the presence of rGO on the surface of the SnO2 film induces a decrease in conductivity in vacuum, demonstrating the surface interaction.  相似文献   

18.
《Current Applied Physics》2018,18(2):163-169
Nitrogen-doped TiO2 coatings on reduced graphene oxide were prepared via a sonochemical synthesis and hydrothermal process. The nanocomposites showed improved photocatalytic activity due to their large specific surface areas (185–447 m2/g), the presence of TiO2 in the anatase phase, and a quenched photoluminescence peak. In particular, GN3-TiO2 (nitrogen-doped TiO2 coatings on rGO with 3 ml of titanium (IV) isopropoxide) exhibited the best photocatalytic efficiency and degradation rate among the materials prepared. With nitrogen-doped on the reduced graphene oxide surface, the photocatalytic activity is enhanced approximately 17.8 times compared to that of the pristine TiO2. The dramatic enhancement of activity is attributed to the nitrogen contents and rGO effectively promoting charge-separation efficiency and providing abundant catalytically active sites to enhance the reactivity. The composites also showed improved pollutant adsorption capacity, electron–hole pair lifetime, light absorption capability, and absorbance of visible light.  相似文献   

19.
Reduced graphene oxide(RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost(相似文献   

20.
《Current Applied Physics》2015,15(11):1397-1401
Capacitive deionization (CDI) is the next generation of water desalination and softening technology by using relatively low capacitive current of electrochemical double layer. Among various carbon-based materials used for making electrode, reduced graphene oxide (rGO) has been intensively studied due to its excellent electrical conductivity and high surface area. Although Hummer method for making graphene oxide (GO) and rGO is a simple process, it remains some impurities in inherent GO and rGO which affect negatively to the CDI performance. In this work, we successfully prepared ultra purified GO and rGO by modifying Hummer method in order to remove entirely excess elements degrading the CDI performance. The electrosorption capacity of ultra purified rGO is considerably better than that of previous rGO, and maximum removal achieves 3.54 mg g−1 at applied voltage of 2.0 V. Thus, this result could be comparable to other researches in CDI process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号