首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use a piecewise-linear, discontinuous Galerkin method for the time discretization of a fractional diffusion equation involving a parameter in the range − 1 < α < 0. Our analysis shows that, for a time interval (0,T) and a spatial domain Ω, the error in L((0,T);L2(W))L_\infty\bigr((0,T);L_2(\Omega)\bigr) is of order k 2 + α , where k denotes the maximum time step. Since derivatives of the solution may be singular at t = 0, our result requires the use of non-uniform time steps. In the limiting case α = 0 we recover the known O(k 2) convergence for the classical diffusion (heat) equation. We also consider a fully-discrete scheme that employs standard (continuous) piecewise-linear finite elements in space, and show that the additional error is of order h 2log(1/k). Numerical experiments indicate that our O(k 2 + α ) error bound is pessimistic. In practice, we observe O(k 2) convergence even for α close to − 1.  相似文献   

2.
The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.  相似文献   

3.
A priori error estimates for the Rosenau equation, which is a K-dV like Rosenau equation modelled to describe the dynamics of dense discrete systems, have been studied by one of the authors. But since a priori error bounds contain the unknown solution and its derivatives, it is not effective to control error bounds with only a given step size. Thus we need to estimate a posteriori errors in order to control accuracy of approximate solutions using variable step sizes. A posteriori error estimates of the Rosenau equation are obtained by a discontinuous Galerkin method and the stability analysis is discussed for the dual problem. Numerical results on a posteriori error and wave propagation are given, which are obtained by using various spatial and temporal meshes controlled automatically by a posteriori error.  相似文献   

4.
5.
This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for one‐dimensional linear convection‐diffusion equations. We prove, under some suitable choice of numerical fluxes and initial discretization, a 2k‐th and ‐th order superconvergence rate of the DDG approximation at nodes and Lobatto points, respectively, and a ‐th order of the derivative approximation at Gauss points, where k is the polynomial degree. Moreover, we also prove that the DDG solution is superconvergent with an order k + 2 to a particular projection of the exact solution. Numerical experiments are presented to validate the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 290–317, 2017  相似文献   

6.
In this paper, we solve the backward problem for a time-fractional diffusion equation with variable coefficients in a bounded domain by using the revised generalized Tikhonov regularization method. Convergence estimates under an a-priori and a-posteriori regularization parameter choice rules are given. Numerical example shows that the proposed method is effective and stable.  相似文献   

7.
We propose a piecewise-linear, time-stepping discontinuous Galerkin method to solve numerically a time fractional diffusion equation involving Caputo derivative of order μ ∈ (0, 1) with variable coefficients. For the spatial discretization, we apply the standard continuous Galerkin method of total degree ≤ 1 on each spatial mesh elements. Well-posedness of the fully discrete scheme and error analysis will be shown. For a time interval (0, T) and a spatial domain Ω, our analysis suggest that the error in \(L^{2}\left ((0,T),L^{2}({\Omega })\right )\)-norm is \(O(k^{2-\frac {\mu }{2}}+h^{2})\) (that is, short by order \(\frac {\mu }{2}\) from being optimal in time) where k denotes the maximum time step, and h is the maximum diameter of the elements of the (quasi-uniform) spatial mesh. However, our numerical experiments indicate optimal O(k2 + h2) error bound in the stronger \(L^{\infty }\left ((0,T),L^{2}({\Omega })\right )\)-norm. Variable time steps are used to compensate the singularity of the continuous solution near t = 0.  相似文献   

8.
9.
In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

10.
A discontinuous Galerkin method by patch reconstruction is proposed for Stokes flows. A locally divergence-free reconstruction space is employed as the approximation space, and the interior penalty method is adopted which imposes the normal component penalty terms to cancel out the pressure term. Consequently, the Stokes equation can be solved as an elliptic system instead of a saddle-point problem due to such weak form. The number of degree of freedoms of our method is the same as the number of elements in the mesh for different order of accuracy. The error estimations of the proposed method are given in a classical style, which are then verified by some numerical examples.  相似文献   

11.
12.
Richard Sharp  Maria Pia Gualdani  Irene Gamba 《PAMM》2007,7(1):2020105-2020106
A discontinuous Galerkin approach to the Wigner-Fokker-Planck equation, a model for quantum devices including environmental effects, is proposed. Evaluation of a pseudo-differential term is the main challenge. The approach can be applied to a variety of potential functions and uses general approximation spaces. Simulations using the method are in agreement with established analytic results and produce reasonable solutions for several potentials. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate is proved. A multigrid algorithm for this method is presented, and numerical experiments indicating its robustness with respect to diffusion coefficient are reported.Received: 5 June 2001, Revised: 12 December 2001, Published online: 4 April 2003Mathematics Subject Classification (1991): 65F10, 65N55, 65N30This research was supported in part by Institute for Mathematics and its Applications, Supercomputing Institute of University of Minnesota, and Deutsche Forschungsgemeinschaft.  相似文献   

15.
Ma  Guanglong  Stynes  Martin 《Numerical Algorithms》2020,83(2):741-765

The direct discontinuous Galerkin (DDG) finite element method, using piecewise polynomials of degree k ≥ 1 on a Shishkin mesh, is applied to convection-dominated singularly perturbed two-point boundary value problems. Consistency, stability and convergence of order k (up to a logarithmic factor) are proved in an energy-type norm appropriate to the method and problem. The results are robust, i.e., they hold uniformly for all values of the singular perturbation parameter. Numerical experiments confirm the theoretical convergence rate.

  相似文献   

16.
This paper is devoted to solve a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain by the Tikhonov regularization method. Based on the eigenfunction expansion of the solution, the backward problem for searching the initial data is changed to solve a Fredholm integral equation of the first kind. The conditional stability for the backward problem is obtained. We use the Tikhonov regularization method to deal with the integral equation and obtain the series expression of solution. Furthermore, the convergence rates for the Tikhonov regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Two numerical examples in one-dimensional and two-dimensional cases respectively are investigated. Numerical results show that the proposed method is effective and stable.  相似文献   

17.
Zhang  Hongwu  Lv  Yong 《Numerical Algorithms》2022,91(3):1145-1163
Numerical Algorithms - We investigate a sideways problem of the time-fractional diffusion equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend on the...  相似文献   

18.
We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h 2 max (1,logk  − 1). Some simple numerical examples illustrate this convergence behaviour in practice. We thank the University of New South Wales for financial support provided by a Faculty Research Grant.  相似文献   

19.
Aleksandra Delić 《PAMM》2013,13(1):349-350
We investigate the convergence of difference scheme for the time-fractional differential equation with fractional derivative of an order with the coefficient at the time derivative containing Dirac delta distribution. Convergence order of is proved. A numerical example demonstrates the theoretical results. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this study we derive the Gelfand-Levitan-Marchenko type main integral equation of the inverse problem for the boundary value problem $L$ and prove the uniquely solvability of the main integral equation. Further, we give the solution of the inverse problem by the spectral data and by two spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号