首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The polar Zn-ZnO(0001) surface is involved in the catalysis of methanol synthesis and the water–gas-shift reaction. We use density functional theory calculations to explore the favorable binding geometries and energies of adsorption of several molecular species relevant to these reactions, namely carbon monoxide (CO), carbon dioxide (CO2), water (H2O) and methanol (CH3OH). We also consider several proposed reaction intermediates, including hydroxymethyl (CH2OH), methoxyl (CH3), formaldehyde (CH2O), methyl (CH3), methylene (CH2), formic acid (HCOOH), formate (HCOO), formyl (HCO), hydroxyl (OH), oxygen (O) and hydrogen (H). For each, we identify the preferred binding geometry at a coverage of 1/4 monolayers (ML), and report calculated vibrational frequencies that could aid in the identification of these species in experiment. We further explore the effects on the binding energy when the adsorbate coverage is lowered to 1/9 and 1/16 ML.  相似文献   

2.
It is proposed that a number of the high-frequency far-infrared (FIR) laser lines observed when CH3OH is optically pumped by high-power CO2 TEA lasers can be identified as refilling torsional transitions within the vibrational ground state. Assignments are presented for 8 such TEA-pump/FIR-laser refilling systems. To provide support for the assigned laser frequencies, high-resolution Fourier transform FIR spectra of CH3OH have been obtained and partially analyzed in the torsional transition region.  相似文献   

3.
ABSTRACT

The structures, stability, and vibrational spectra of the binary complexes formed between acetone and nitrous (trans and cis) acid have been investigated using ab initio calculations at the SCF and MP2 levels and B3LYP calculations with 6-311++G(d,p) basis set. Full geometry optimization was made for the complexes studied. It was established that the complex (CH3)2CO···HONO-trans is more stable than the complex (CH3)2CO···HONO-cis by 0.5–0.8 kcal·mol?1. The accuracy of the calculations has been estimated by comparison between the predicted values of the vibrational characteristics (vibrational frequencies and infrared intensities) and the available experimental data. It was established, that the methods, used in this study are well adapted to the problem under examination. The predicted values with the B3LYP/6-311++G(d,p) calculations are very near to the results, obtained with MP2/6-311++G(d,p). The calculated frequency shift Δν(O[sbnd]H) for the complex (CH3)2CO···HONO-trans (1A) is larger than for the complex (CH3)2CO···HONO-cis (1B). In the same time the intensity of this vibration increases dramatically upon hydrogen bonding. The calculated increase for the complex 1A is up to 15 times and for the complex 1B is up to 30 times. The changes in the vibrational characteristics (vibrational frequencies and infrared intensities) of (CH3)2CO upon the complexation are more insignificant than the changes in the vibrational characteristics of HONO-trans and HONO-cis.  相似文献   

4.
Abstract

The rotational Raman spectra of four vapor phase isotopic methanols, CH3OH, CH3OD, CD3OH and CD3OD, have been reported for the first time in the wavenumber regions from 5 to 100–120 cm?1. The major parts of the spectra consist of bands equispaced at 3.19, 3.04, 2.56 and 2.46 cm?1 intervals, respectively, and have been interpreted as the pure rotational S-branch transitions.  相似文献   

5.
The chemisorption, condensation, desorption, and decomposition of methanol, both CH3OH and CH3OD, on a clean Ni(110) surface have been characterized using high resolution electron energy loss spectroscopy, temperature programmed reaction spectroscopy, and low energy electron diffraction. The vibrational spectrum of the saturated chemisorbed layer, 7.4 × 1014 molecules cm?2, is almost identical to the infrared spectrum of liquid or solid methanol. Condensation of multilayers of methanol is facile at 80 K. The only quasi-stable intermediate isolated during the decomposition is a methoxy species, CH3O, which decomposes thermally to CO and H. The evolution of both CO and H2 occurs in desorption limited processes.  相似文献   

6.
用光电子成像技术和从头算法研究Ag-(CH3OH)x (x=1, 2)和AgOCH3-. 从AgOCH3-振动分辨的光电子谱得 到AgOCH3-的绝热和垂直电离能分别为1.29(2)和1.34(2) eV. Ag-(CH3OH)1,2相似文献   

7.
甲醇与氟原子之间的抽氢反应可以生成HF和CH3O、CH2OH自由基等产物. 该反应在环境化学、燃烧化学、辐射化学和星际化学中都非常重要. 基于之前构建的全维高精度势能面,本文采用准经典轨线方法研究了该典型反应的动力学. 特别是使用正则模式分析方法确定了多原子产物CH3O和CH2OH的振动态分布. 研究发现,当反应物处于振转基态时,CH3O和CH2OH主要分布在基态. 当反应物CH3OH的OH伸缩模式激发为第一激发态时,产物CH2OH的OH伸缩模式、扭转模式、H2CO 面外弯曲模式及其组合会被有效激发. 在两条通道中,可用能量大部分都流入HF的振动能和产物的平动能,而自由基产物CH3O或CH2OH只得到非常少的能量,与实验结果一致,这也表明了自由基的旁观者性质.  相似文献   

8.
The Fourier transform Raman and IR spectra of betulin (lup‐20(29)‐ene‐3β,28‐diol) crystalline powder were recorded and analyzed. The vibrational wavenumbers and the corresponding vibrational assignments were theoretically studied using the Gaussian 03 package. The calculated vibrational wavenumbers with the B3LYP density functionals are generally consistent with the observed spectra. A complete vibrational characterization of betulin modes has been proposed here for the first time. Based on the vibrational analysis, two direct applications of the results have been described. It was shown that the outer bark of Betula Pendula Roth (the birch tree) contains betulin as a major component along with minor amounts of betulinic acid (BA), lupeol and other pentacyclic triterpenes derivatives. Since the major disadvantage of betulin is its low solubility, giving rise to serious problems in making pharmaceutical formulations, several guest–host type of complexes of betulin–cyclodextrins have been prepared and analyzed using FT‐Raman spectroscopy. Based on the vibrational analysis, it was concluded that the OH and CH2OH functional groups are free from chemical interactions with the cyclodextrin cavity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
自行搭建了用于研究表面光催化的宽带红外和频振动光谱并可以原位紫外光激发的装置. 利用自制的结构紧凑小巧的高真空样品池,可以在10 kPa氧气氛围下经原位紫外光照除掉 射频磁控溅射制备的二氧化钛薄膜表面的有机污染物. 通过在室温下改变甲醇气压和指认吸附在薄膜表面的甲醇的和频振动光谱,发现薄膜表面有两种吸附的甲醇,分子形式吸附的甲醇(CH3OH)和解离吸附的甲醇(CH3O). 当甲醇的覆盖度由低变高时,分子形式吸附的甲醇的CH3的对称伸缩振动和费米共振峰红移了6~8 cm-1. 真空下,薄膜表面的甲氧基和表面的氢原子可以重新结合并以甲醇分子的形式脱附. 研究表明二氧化钛薄膜体系存在两个平衡:气相甲醇和表面吸附的甲醇分子之间,以及表面吸附的甲醇分子和甲氧基之间.  相似文献   

10.
    
The rotational millimeter-wave spectrum of CH3 18OH has been revisited, and 162 transitions of botha- andb-types have been measured in the 119–165 GHz spectral range. The spectrum was recorded using the frequency-modulated millimeter-wave spectrometer at the Justus-Liebig-Universit?t in Gie?en. The CH3 18OH transition assignments were based on energy levels obtained from the far-infrared analysis of S. Zhao (Ph.D. thesis, University of New Brunswick, 1993) using the "Ritz" program of G. Moruzziet al. (J. Mol. Spectrosc.167, 156 (1994)) for direct energy level fitting. The relatively low residuals between calculated and observed frequencies highlight the good quality of the results from this program. The newly measured transitions combined with those existent in the literature have been included in least-squares fits to improve the set of rotational, torsional and centrifugal distortion constants for O-18 methanol.  相似文献   

11.
High-resolution Fourier transform spectroscopy has been applied to confirm previously proposed assignments for nine far infrared (FIR) laser lines from the CH3-deformation state of CH3OH and one line from the CH3-rocking state. Accurate frequencies are deduced for the observed and other predicted FIR laser transitions. FIR torsional branch frequencies in the ground state which were used in the confirmation are presented. Comments are also made on the OH-bending mode of CH3OH.  相似文献   

12.
利用和频光谱并结合衰减全反射傅立叶红外光谱技术研究了甲醇和1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC)磷脂双层膜之间的相互作用. 研究结果表明甲醇与生物膜作用后,嵌入到磷脂分子头部的胺基和磷酸基间的空间内,并与磷脂分子头部甲基以及与胺基附近水分子采用相似的取向方向. 嵌入磷脂分子头部的甲醇分子能扰动磷脂分子的整个疏水碳链.  相似文献   

13.
A study has been made of vibrational properties in ethylene glycol (EG; H(OCH2CH2)OH) and EG monomethyl ether (EGmE; CH3(OCH2CH2)OH) in solution together with poly(ethylene oxide) (PEO; H(OCH2CH2)n,OH) at different concentrations, performed by Fourier transform infrared absorbance (FT-IR) spectroscopy. The results ae compared with previous viscometry and photon correlation spectroscopy (PCS) studies, using EG dimethyl ether (EGdE; CH3(OCH2CH2)OCH3) as solvent as well. These homologous systems differ from each other in the number of OH end groups, in particular two for EG, one for EgmE and zero for EGdE. Combining analysis of the vibrational and transport properties of EG, EGmE and EGdE in solution with PEO over a wide range of concentration made it possible to check the quality (good theta or poor) of these three different solvents and the role played by the hydrogen bond in the various solute-solvent interaction mechanisms, resulting in the well known de Gennes scaling law.  相似文献   

14.
Electron energy loss Spectroscopy (ISEELS) under dipole scattering conditions is used to obtain the carbon and oxygen K-shell oscillator strength spectra of methanol (CH3OH), propanol (CH3CH2CH2OH), propenol (CH2=CHCH2OH), propargyl alcohol (HC≡CCH2OH), propanoic acid (CH3CH2COOH), acrylic acid (CH2=CHCOOH) and propiolic acid (HC≡CCOOH). A detailed interpretation of these spectra is presented, along with a comparison with the NEXAFS spectra of multilayers of these molecules adsorbed on a Si(111) surface, as recently reported by Outka et al. (Surf. Sci., 185 (1987) 53). Good agreement is found between the multilayer NEXAFS and the gas phase ISEEL spectra, except for the carboxylic acids which differ dramatically in the discrete portion of the O1s spectrum. Possible origins for this difference are discussed. The C1s and O1s spectra of methyl formate (HCOOCH3) are also reported and interpreted in comparison with the spectra of formic acid and methanol.  相似文献   

15.
Two lanthanide coordination complexes [Nd(NO3)3(CH3OH)2(4,4′-bipy)2] (1) (4,4′-bipy=4,4′-bipyridine) and [4,4′-Hbipy][La(NO3)4(H2O)2(4,4′-bipy)] (2), with a salt of cationic diprotonated 4,4′-bipy, [2(4,4′-H2bipy)][4(NO3)] (3), have been identified and isolated from a methanol solution of Ln(NO3)3·6H2O, 4,4′-bipyridine and pyrazine in 1:2:1 ratio. Their structures have been determined by single-crystal X-ray diffraction analyses, which reveal that 1 has an interesting three-dimensional supramolecular architecture containing 21 double-stranded helical chains through hydrogen bonding and π–π interactions, while 2 and 3 have well defined infinite chiral 3D open networks that undergo self-interpenetration. The electrospray ionization mass spectra (ESI-MS) indicate that the covalent complex has higher stability than the electrostatic bonding one. ESI-MS/MS of these ions reveal that the Ln–O bond forms a stronger coordinated bonding than that of Ln–N system and the nitrate anion remains bound to the lanthanide centers after complete dissociation in methanol solution.  相似文献   

16.
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

17.
The sub-millimeter wave (SMMW) spectral measurements using a fast scan backward wave oscillator based spectrometer have been carried out for asymmetrically deuterated methanol CHD2OH (Methanol-D2). Transition frequencies have an estimated uncertainty of about ±50 kHz. Albeit the complexity in the spectra, assignments were possible for a large number of a-type (ΔK = 0) transitions. In the course of the assignment process a strong c-type (ΔK = 1) Q-branch connecting two states of different symmetry species has been identified. This Q-branch assignment is significant because it is forbidden in the normal parent species CH3OH. It becomes allowed in the current species due to the effects of the asymmetry introduced by the off-axis deuterium in the hindering potential to the internal rotation in the molecule. The assignments are rigorously confirmed using combination relations which required the measurement of some other related lines. To our knowledge this is the first time such symmetry breaking transitions are reported in CHD2OH and in fact this is the first time the SMMW spectrum of CHD2OH is being reported. Detailed spectral study of this molecule in the IR and FIR regions is in progress and will be reported elsewhere. Detailed study of the identification optically pumped FIR laser line is underway.  相似文献   

18.
The tetramethylpnikogenonium ions (CH3)4X+ (X = N, P, As, Sb) have been studied by infrared and Raman spectroscopy. Additionally, their structures and vibrational frequencies were ab initio calculated at the HF/6-31+G* and for (CH3)4Sb+ at the HF/6-31+G*/LANL2DZ level of theory. For the tetrahedral cations an assignment of the vibrational frequencies is discussed on the basis of a comparison of calculated and measured frequencies.  相似文献   

19.
An ab initio quartic anharmonic force field for methanol has been calculated at the equilibrium position using the CCSD(T) method for the structure and the harmonic potential energy surface, and the MP4(SDQ) method for the anharmonic part of the surface. A triple zeta basis set was employed with symmetrized curvilinear internal valence coordinates in all calculations. The internal coordinate force field constants have been transformed into force constants in the dimensionless normal coordinate representation for various isotopomers. Vibrational term values for CH3OH, CH3OD, CD3OH, and CD3OD have been obtained using second order perturbation theory. Particular care has been devoted to the inclusion of Fermi resonance interactions between different vibrational states. A good accuracy has been achieved in the calculation of the fundamentals for all the isotopomers, the mean absolute error being 5.8 cm?1.  相似文献   

20.
The adiabatic separation of large-amplitude torsional motion from small-amplitude vibrations is applied as an aid in interpreting the results of fully coupled quantum calculations on a model methanol Hamiltonian. Comparison is made with prior work on nitromethane [D. Cavagnat, L. Lespade, J. Chem. Phys. 106 (1997) 7946]. Even though the torsional potentials are very different, both molecules show a transition from adiabatic to diabatic behavior when the CH stretch is excited to νCH = 4 or higher. In the adiabatic approximation, the effective torsional potentials for the various CH stretch vibrational states do not cross, but the CH vibrational amplitude moves from one bond to the next as a function of torsional angle. In the diabatic approximation, the effective torsional potentials do cross, but the distribution of the CH vibrational amplitude remains approximately constant in the vicinity of the crossing. The transition to diabatic behavior is promoted by the normal mode to local mode transition, and the relevant adiabatic and diabatic effective torsional potentials are determined by the torsion-vibration coupling. The torsion-vibration couplings in the four overtone manifolds considered (methanol OH, CH, nitromethane CH, and hydrogen peroxide OH) are large, reaching 265-500 cm−1 by νXH = 6, and are of generally similar magnitude. The largest torsion-vibration couplings involve the first Fourier term in the torsional angle (cosγ for the CH stretch in methanol and the OH stretch in HOOH), whereas higher Fourier terms (cos2γ in nitromethane and cos3γ for the OH stretch of methanol) result in somewhat weaker coupling. Nonadiabatic matrix elements in methanol couple the torsional and vibrational energies and they exhibit a slow fall-off with coupling order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号