首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
8-Benzyl-1.4-dioxa-7,10-dithiacyclododecane and 11-benzyl-1,4,7-trioxa-10,13-dithiacyclopentadecane were obtained by the interaction of (2,3-dibromo-1-propyl)benzene with 1,8-dimercapto-3,6-dioxaoctane and 1,11-dimercapto-3,6,9-trioxaundecane. The extracting ability of the obtained compounds has been studied in relation to Sr2+ and Pb2+ ions from aqueous solutions in the presence of anions of various degrees of hardness with determination of the metal content by a radiometric method. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 244–249, February, 2006.  相似文献   

2.

The novel ( E , E )-dioxime, 5,6:17,18-dibenzo-11,12-(4'-nitrobenzo)-2,3-bis(hydroxyimino)-7,16-dithia-10,13-dioxa-1,4-diazacyclooctadecane) ( H 2 L ), has been synthesized from reaction of ( E , E )-dichloroglyoxime ( 1 ) with 2,3:14,15-dibenzo 8,9-(4'-nitrobenzo)-4,13-dithia-7,10-dioxa-1,16-diazahegzadecane ( 2 ). The mononuclear Co(III) complex ( 4 ) of this dioxime was prepared by oxidation of the cobalt (II) complex. The -capped Co(III) complex ( 5 ) was synthesized by using a precursor Co(III) complex and boron trifluoride dietherate. The heterotrinuclear complexes ( 6 ) and ( 7 ) were prepared by reaction of ( 5 ) with NiCl 2 ·6H 2 O and CdCl 2 ·H 2 O, respectively. In addition, the homotrinuclear Cu(II) complex ( 8 ), has also been prepared by the reaction of this dioxime with CuCl 2 ·H 2 O. The structures of the dioxime and its complexes were identified by using elemental analysis, 1 H- and 13 C-NMR, IR, and mass spectral data.  相似文献   

3.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

4.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

5.
Abstract

Dibenzo[e,k]-2,3-bis(hydroxyimino) 1.4.7.10-tetrathia-2,3,8,9-tetrahydrocyclododecine (S4H2) and dibenzo-[e,k]-2,3-bis(hydroxyimino)-1,4-dithia-7,10-dioxa-2,3,8,9- tetrahydrocyclododecine (O2S2H2) have been prepared from (E,E)-dichloroglyoxime, 2,3,8,9-dibenzo-1,4,7,10-tetrathiadecane (DTT) and 2,3,8,9-Dibenzo-4,7-dioxa-1,10-dithiadecane (DDD) which was synthesized by treating 1,2-bis(o-aminophenoxy)ethane with HNO2 and potassium ethylxsanthate. The structures of these vic-dioximes have been determined as the (E,E)-forms according to 1H-NMR and IR data. Only mononuclear complexes with a metal-ligand ratio of 1:2 have been isolated with Co(II), such as [(S4H)2Co(III)L′Cl] and [(O2S2H)2Co(III)L′Cl]; Cu(II) forms only trinuclear complexes. Reaction of the mononuclear complexes with Pd(II) gives heterotrinuclear complexes.  相似文献   

6.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

7.
The relationship between the 13C and 17O NMR chemical shifts and the dihedral energies (non-bonding interactions) of 1,4-dioxaspiro[4.4]nonane, 1,4-dioxa- and 6,10-dioxaspiro[4.5]decane, 1,4-dioxa- and 6,11-dioxaspiro[4.6]undecane, 1,5-dioxaspiro[5.5]undecane, 1,5-dioxa and 7,12-dioxaspiro[5.6]dodecane and 1,6-dioxaspiro[6.6]tridecane were analyzed. These data showed correlation of the non-bonding interactions with the chemical shift of the spiranic carbon, as well as a linear relationship between 13C and 17O.  相似文献   

8.
A novel quadridentate, N2O2 type Schiff base, synthesized from 1,4‐bis‐(o‐aminophenoxy)butane and 2‐hydroxynaphthalin‐1‐carbaldehyde, forms stable complexes with transition metal ions such as Co(II), Cu(II) and Ni(II) in DMF. Microanalytical data, elemental analysis, magnetic measurements, UV‐visible and IR‐spectra as well as conductance measurements were used to confirm the structures. Electrochemical measurements show that metal complexes undergo quasi‐reversible one‐electron redox processes. The voltammetric results also revealed that the CuL complex has the highest electron transfer rate indicating that both the Cu(II) and Cu(I) forms appear in a similar planar configuration, so the electron transfer does not require larger reorganization of the complex.  相似文献   

9.
Cyclodiphosph(V)azane of chromene, (1,3-diphenyl-2,4-bis(3-amino-9-methoxy1-tolyl-3H-benzo[f]chromene-2-carbonitrile)-2,2,4,4-tetrachlorocyclodiphosph(V)azane (III), reacts with stoichiometric amounts of transition metal salts such as Co(II), Ni(II), Cu(II), and Pd(II) to afford colored complexes in a moderate to high yield. The structure of the isolated complexes was suggested based on elemental analyses, IR, molar conductance, UV-Vis, 1H, 13C, and 31P-NMR, magnetic susceptibility measurements, and dark electrical conductivity of solid state from room temperature up to 450 K. The complexes have been investigated in solution by spectrophotometric molar ratio and conductometric methods. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using the Coats and Redfern method. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

10.
The new phthalocyanine peripherally substituted with a twelve-membered dioxadiaza macrocycle was synthesized by cyclotetramerization of 1,2-bis(2-{4′-[(4′-methylphenyl)-sulphonyl]-1′,7′-dioxa-4′,10′-diazacyclododecane})-4,5-dicyanobenzene (4) which was obtained from 1,2-bis(2-{4′-[(4′-methylphenyl)sulphonyl]-1′,7′-dioxa-4′,10′-diazacyclododecane})-4,5-dibromobenzene (3). Metallophthalocyanine was also prepared by the reaction of the dicyano-substituted macrocycle in the presence of anhydrous CuCN. The new compounds were characterized by a combination of elemental analysis, 1H and 13C?NMR, IR, electronic and mass spectroscopies.  相似文献   

11.
The bulk liquid membrane transport of silver (I) ion was studied by dibenzopyridino-18-crown-6(DBPY18C6), 4-nitrobenzo-15-crown-5(NB15C5), 2-aminothiaphenol and a new synthesized ligand, 1,4-dioxa-7,10-dithiacyclododecane-2,3-dione as carriers in nitrobenzene (NB). The effects of pH on the source phase and receiving phase, the nature and concentration of stripping agents in the receiving phase and the picrate concentration as counter ion in source phase were investigated. The results show that the efficiency of transport of the Ag+ ion through membranes, changes with the nature of the ligand. The efficiency transport increases for the ligands with donating nitrogen and sulfur atoms with respect to oxygen donor atoms. Maximum transport efficiency was observed for silver (I) ion in the presence of thiosulfate ion ( ) as a suitable stripping agent. The results show that the sequence of transport efficiency for Ag+ ion using DBPY18C6, NB15C5, 2-aminothiaphenol and 1,4-dioxa-7,10-dithiacyclododecane-2,3-dione as carriers in organic solvents is: nitrobenzene > dichloromethane > 1,2- dichloroethane > chloroform.  相似文献   

12.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

13.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

14.
The new Co(II), Cu(II), Ni(II) and Zn(II) complexes of potentially N2O2 Schiff base ligand [N,N’-bis(salicyldehydene)-1,4-bis-(o-aminophenoxy)butane] (H2L) prepared from 1,4-bis-(o-aminophenoxy)butane and salicyldehyde in DMF. Microanalytical data, elemental analysis, magnetic measurements, lH NMR, 13C NMR, UV-visible and IR spectra as well as conductance measurements were used to confirm the structures. In all complexes, H2L behaves as a tetradentate. The article is published in the original.  相似文献   

15.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

16.
The semicarbazone (L1) has been prepared by reaction of semicarbazide and glutaraldehyde (2 : 1) in distilled water and methanol (1 : 1). The reaction of semicarbazide, glutaraldehyde and diethyl oxalate in distilled water and methanol gave Schiff-base L2, 1,2,4,7,9,10-hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone. Complexes of first row transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) have also been synthesized. The ligand and its complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, 1H NMR, UV–Visible spectra and thermogravimetric analysis (TGA). Molar conductance values show that the complexes of Ni(II), Cu(II), Zn(II), Mn(II) and Co(II) are 1 : 2 electrolytes. On the basis of electronic spectral studies and molar conductance measurements an octahedral structure has been proposed for Mn(II) and Co(II) complexes, tetrahedral for Zn(II) complex and square planar for Ni(II) and Cu(II). The thermal behavior of the compounds, studied by TGA in a nitrogen atmosphere up to 800°C, reveal that the complexes have higher thermal stability than the macrocycle. All the synthesized compounds and standard drugs kanamycin (antibacterial) and miconazole (antifungal) have been screened against bacterial strains Staphylococcus areus, Escherichia coli and fungal strains Candida albicans, Aspergillus niger. The metal complexes inhibit growth of bacteria to a greater extent than the ligand.  相似文献   

17.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

18.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

19.
Mononuclear NCS? containing complexes, [M(NCS)2L] (L?=?N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine), [Cu(NCS)2L′] (L′?=?N-(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine), and NCSe? containing complexes [ML(NCSe)(H2O)]ClO4 (M?=?Ni+2, Co+2) have been synthesized and characterized by elemental analysis, spectroscopic, and physico-chemical methods. Structural studies of [Cu(NCS)2L′] show copper is five coordinate with distorted trigonal bipyramidal geometry with two cis NCS?. [M(NCS)2L] and [ML(NCSe)(H2O)]ClO4 (M?=?Ni+2 and Co+2) are expected to be octahedral.  相似文献   

20.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号