首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用Ti,Sn和C元素粉末作为反应原料,按Ti2SnC化学计量比作为原料配比(Ti: Sn:C =2: 1:1),通过机械合金化(MA)制备出Ti2SnC导电陶瓷粉体.研究球磨时间、转速、球料比和磨球直径对机械合金化合成Ti2SnC形貌和相变的影响.研究表明:单质混合粉体经过机械合金化(球磨转速550 r/min,球料比10:1,磨球直径12 mm)球磨10 h,生成以Ti2 SnC为主晶相且含有少量Sn和TiC杂质相的混合粉体.较长的球磨时间或较高的转速会抑制Ti2SnC的合成;同样,较大直径的磨球或较高的球料比会使反应体系能量过高,使Ti2SnC分解转化成较稳定的TiC.  相似文献   

2.
刘可心  金松哲  杨晨 《人工晶体学报》2015,44(12):3715-3718
对Ti、Al、C单质混合粉体进行机械合金化加工,通过对所得混合粉体进行高温热处理以此获得高纯度的Ti3AlC2陶瓷粉体,研究了球磨时间和热处理温度对粉体中Ti3AlC2纯度的影响.研究表明:在球磨转速550 r/min,球磨时间3h的条件下,合成混合粉体中的Ti3AlC2的含量为83.5wt;.在850~1000℃范围内,粉体中Ti3AlC2的含量随着热处理温度的升高而提高,当热处理温度为1000℃时,计算粉体中Ti3AlC2的含量高达99.7wt;;将观察倍数扩大到60000倍,可以清晰观察到Ti3AlC2典型六方形状的晶粒.  相似文献   

3.
刘可心  金松哲  杨晨 《人工晶体学报》2015,44(11):3099-3102
将Ti、Al、C单质粉体作为实验原料,利用机械合金化和放电等离子烧结技术制备Ti3AlC2块体材料.研究烧结温度和保温时间对块体相组成及性能的影响.研究表明:粉体经过机械活化作用,反应活性增加,Ti-Al-C体系的自由能得到提高,为后续的放电等离子烧结做了基础;在温度为1050℃(保温时间5 min)时进行块体烧结,所得块体中Ti3AlC2的含量为98.5wt;,随着保温时间的延长(10~20 min),块体中Ti3AlC2的纯度得到提升(>99wt;),相对密度也随之增加,但显微硬度下降.  相似文献   

4.
采用化学计量比为3Ti/Si/2C的单质粉体为反应原料,通过机械合金化工艺和热处理制备高纯度的Ti3SiC2陶瓷粉体,研究了热处理温度对提高机械合金化混合粉体中Ti3SiC2纯度的影响.研究表明:在球磨转速400 r/min,球磨时间10 h的条件下,合成以Ti3SiC2为主相的混合粉体,其中Ti3SiC2含量为75.5vol;,同时出现表面灰黑色且坚硬的不规则块体,成分与球磨粉体相似.在热处理温度为850~1000℃范围内,混合粉体中Ti3SiC2的含量随着热处理温度的升高而提高,当热处理温度为1000℃时,计算粉体中Ti3SiC2的含量高达98.5vol;..  相似文献   

5.
采用高纯硼粉和碳粉放电等离子烧结工艺(Spark Plasma Sintering technique)烧结了三种不同化学计量比的硼-碳系陶瓷,分别为:B3.5C, B4.0C和B4.5C.用X 射线衍射分析了烧结体的物相.结果表明:原始粉末在1300~1600℃合成富硼碳化硼陶瓷(B4C1-x),致密化过程则发生在1700℃~1900℃.用放电等离子烧结成功地在1900℃获得了相对致密度大于95;的碳化硼陶瓷.  相似文献   

6.
以硼粉和石墨粉为原料,采用放电等离子烧结技术(SPS)反应烧结碳化硼陶瓷,使碳化硼的合成和致密化一次完成.研究结果表明:碳化硼的SPS反应烧结过程可以分为5个阶段,碳化硼合成的起始温度在1100 ℃左右,致密化的起始温度则在1650 ℃左右;在1800 ℃烧结得到了致密度为98.2;的碳化硼陶瓷,其维氏硬度和杨氏模量分别达到48.8 GPa和264.5 GPa.  相似文献   

7.
以单质硼粉和石墨粉为原料,采用放电等离子烧结技术(Spark Plasma Sintering,SPS)制备了碳化硼陶瓷,使碳化硼的合成和致密化一次完成。系统研究了烧结温度、烧结压力、保温时间和升温制度等SPS工艺条件对碳化硼陶瓷烧结性能的影响。结果表明:碳化硼合成的起始温度在1100℃左右;较高的烧结温度和烧结压力、适中的保温时间和升温速率,以及两步保温的升温制度有利于碳化硼陶瓷的烧结致密化;确定了适宜的SPS工艺条件为烧结温度1800℃、烧结压力40 MPa、保温时间6 min,升温速率100℃/min、两步保温,在此条件下得到了致密度较高的碳化硼陶瓷。  相似文献   

8.
杨彩  王富耻  马壮  卢林 《人工晶体学报》2013,42(6):1171-1174
采用放电等离子烧结方法制备LaTiO3材料.基于不同温度烧结样品的物相组成变化,对SPS烧结制备LaTiO3的反应过程进行研究.研究结果表明:SPS烧结制备LaTiO3的反应过程可以分为低温、中温和高温三个阶段.随着烧结温度升高,由于系统环境变化和高温氧缺位的形成,Ti的价态经历了Ti3+ →Ti4+→Ti3+/Ti4 +→Ti3+的转变.由于相变阻力的存在,LaTiO3并不能由原料直接生成,在低温和中温阶段要经历La2Ti2O7,La2/3TiO3,La5Ti5O17等中间相.LaTiO3相的生成主要发生在1400~ 1550℃,并在1550℃生成单相LaTiO3.  相似文献   

9.
采用放电等离子烧结(SPS)方法烧结出了致密的掺镓氧化锌陶瓷(0.075wt; GZO).样品的烧结温度为950~1200℃,烧结时间为3~21 min,并对样品的物相、断口形貌、电学性能以及密度进行了测试和分析.结果表明,烧结条件对GZO的晶体结构没有影响,但是对样品的密度、晶粒尺寸、电阻率等性质有一定的影响.综合分析上述结果可得到用SPS方法烧结GZO陶瓷的最佳烧结工艺是烧结温度1100℃,烧结时间9 min.  相似文献   

10.
以高纯ZrB2粉末和ZrOCl2为原料,应用沉淀法制备了ZrO2包覆ZrB2复合粉体,并通过放电等离子烧结技术(SPS)得到高致密度的ZrB2/ZrO2复合材料.采用TEM、SEM、XRD对粉体及其烧结体进行测试,并对纯ZrB2粉体与包覆式复合粉体的烧结行为进行分析.研究结果表眀:利用沉淀法可以形成包裹结构;包覆式复合粉体的烧结性能大大优于纯ZrB2粉体,在1950℃的烧结温度下,保温10min,得到相对致密度97.8;的ZrB2/ZrO2复合材料.  相似文献   

11.
以气固反应硫化制备的γ-La2S3粉体为原料,采用放电等离子烧结(SPS)技术制备出γ-La2S3多晶陶瓷.研究了Ba2+掺杂量对得到γ-La2S3粉体物相结构的影响,并分析了烧结温度、再硫化工艺参数对γ-La2S3多晶陶瓷微观组织结构和红外透过率的影响.结果表明:掺入Ba2有利于低温获得稳定的高温型γ-La2S3相,在nLa/nBa为5 ~15时能够得到纯相的γ-La2S3粉体.在烧结温度为1150℃,保温时间为5min时制备出的γ-La2S3陶瓷致密,无明显气孔,在CS2气氛下再硫化2.5h后,在10 ~ 14μm波段的红外峰值透过率达到42%.  相似文献   

12.
本文采用机械合金化法成功制备了N型赝三元(Bi2Te3-Sb2Te3-Sb2Se3)合金粉体材料,该材料颗粒均匀、细小,颗粒尺寸在10~100nm量级.在此基础上采用冷压烧结法制备了N型赝三元机械合金化冷压烧结热电材料.研究了这种热电材料的电导率、塞贝克系数与烧结温度的关系.  相似文献   

13.
以天然高岭土以及活性氧化铝、氧化锌为原料,通过添加天然长石,以石墨为造孔剂,原位反应烧结制备了莫来石-锌铝尖晶石多孔陶瓷.采用XRD、SEM、EDS能谱分析分别确定了试样的物相组成、显微结构与微区化学组成.采用阿基米德排水法与抗压强度测定法测定了试样的孔隙率与抗压强度.结果表明:当原位合成温度为1450~1500℃范围时,试样的物相组成为莫来石与锌铝尖晶石,莫来石呈针状晶须,锌铝尖晶石晶形发育良好,材料的抗压强度增加迅速,为最合适的原位合成温度.长石的加入促进了针状莫来石的形成,促进了材料的烧结,提高了多孔陶瓷的强度.  相似文献   

14.
采用99;纳米η-Al2O3为原料,无压烧结制备单相氧化铝陶瓷,通过TG-DSC、XRD和SEM等手段对试样进行分析和表征,并测试其力学性能.结果表明:纳米η-Al2O3 1084.8℃时转变为α-Al2O3,转变温度小于理论转变温度;晶型转变释放的能量能够降低氧化铝陶瓷的烧结温度,1550℃时试样的相对密度达91.48;,显气孔率为2.45;,断裂韧性较高.由于η-Al2O3的密度小于α-Al2O3,无压烧结时试样发生晶型转变产生体积收缩,致密性较低,直接用η-Al2O3制备致密的单相Al2O3陶瓷较为困难.  相似文献   

15.
采用全铁含量21.89;,Fe2O3含量29.80;的硫铁矿烧渣,在高温还原气氛下以少量还原剂还原,制备了电阻率较低的高强导电陶瓷.研究了烧结温度、保温时间、矿化剂种类及掺杂量对导电陶瓷强度及电阻率的影响.结果表明:导电陶瓷的强度随烧结温度的升高而增加,保温时间的延长而降低,矿化剂掺杂量的增加而增加;而电阻率的变化趋势正好与强度变化相反.当还原剂与硫铁矿烧渣比值为0.1,1400℃保温60 min,萤石掺杂量5.4;,导电陶瓷电阻率达到58 Ω·cm,强度87 MPa;而当Na2O掺杂量达到4;,电阻率为88 Ω·cm,强度为84MPa.  相似文献   

16.
在1600℃、50 MPa条件下,采用放电等离子烧结工艺制备出了CNTs/B4C陶瓷基复合材料.研究了CNTs添加量对B4C烧结行为和力学性能的影响.采用X射线衍射仪和扫描电镜分析了复合材料的物相组成和微观结构.结果表明:随着CNTs含量的增加,复合材料的相对密度和力学性能呈现先增加后减小的变化趋势,且当CNTs含量为1wt;时,相对密度和力学性能达到最大值.分析认为,适量的CNTs有利于烧结过程中粉体的滑移,可以提高复合材料的烧结致密度,而随着CNTs含量的增加,位阻效应显著,使得复合材料的致密度降低.  相似文献   

17.
为降低氧化铝陶瓷制备成本,改善其性能,以价格低廉的纳米η-Al2 O3为原料,TiO2为烧结助剂,制备氧化铝陶瓷.研究了TiO2加入量对纳米η-Al2 O3氧化铝陶瓷的体积密度、显气孔率、物相组成和微观结构的影响.结果表明:TiO2通过增加氧化铝中铝离子点缺陷数量而提高其扩散系数,促进氧化铝陶瓷的致密化及晶粒的生长.η-Al2 O3到α-Al2 O3的相变首先在氧化铝颗粒表面进行,然后迅速扩散至内部完成.通过计算晶胞参数大小,定量证明刚玉晶体发育良好,引入适量TiO2对氧化铝陶瓷高温性能和化学稳定性影响较小.当TiO2加入量为2wt;,烧结温度为1600℃时,氧化铝陶瓷的性能优良,体积密度为3.70 g/cm3、显气孔率为1.2;,存在一定数量的晶间气孔和晶内气孔,晶体间结合紧密,晶粒尺寸10~30μm.  相似文献   

18.
采用热压烧结方法制备了羟基磷灰石/透辉石复相陶瓷材料,分析了羟基磷灰石基体与透辉石之间的界面结合、扩展及渗透过程,测试了复合材料的断裂韧性、硬度、抗弯强度与添加剂含量的对应关系,并对复相陶瓷材料的微观结构与力学性能进行了研究.结果表明:在1320℃,28MPa条件下热压烧结制备的复相陶瓷材料,其抗弯强度、断裂韧性均有明显提高,抗弯强度达到90MPa,断裂韧性达到1.07MPa·m1/2.  相似文献   

19.
采用钢球为研磨球,以单质Fe、Al为原料,对不同配比的Fe-Al混合粉体在无保护气氛和非真空条件下进行机械球磨,获得了Fe(Al)超饱和固溶体,对其进行真空退火制备了Fe3Al金属间化合物。XRD和DSC分析表明:在球磨大约10 h以后,粉体中单质Al的数量开始减少,且随着球磨时间的延长,这种趋势更加明显;球磨80 h后,粉体中单质Al已全部固溶于Fe中,形成了Fe(Al)超饱和固溶体。这说明在无保护气氛和非真空条件下机械合金化法可以制得较纯的Fe3Al金属间化合物。  相似文献   

20.
以微米MgO (AR)为主要原料,纳米SiO2 (AR)为添加剂,制备镁基陶瓷材料,旨在提高MgO陶瓷烧结性能.通过XRD和SEM等检测手段对煅烧后试样的物相组成和微观结构进行表征,重点研究添加剂SiO2对MgO陶瓷的物相组成、结构及相对密度影响.结果表明:添加SiO2对MgO陶瓷基体起到促烧作用.随着SiO2加入量的增加,烧后试样的相对密度和烧后线变化率呈先增大后减小趋势.加入4mol;的SiO2,经1550℃煅烧后试样相对密度达到96.5;;引入的SiO2与基体中的MgO生成M2SO4新相,同时钉扎在方镁石晶界及晶界气孔处,通过抑制方镁石相的晶界移动,进而阻碍方镁石晶粒的长大,促进了基体致密化程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号