首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiols and primary aliphatic amines (PAA) are ubiquitous and extremely important species in biological systems. They perform significant interplaying roles in complex biological events. A single fluorescent probe differentiating both thiols and PAA can contribute to understanding the intrinsic inter‐relationship of thiols and PAA in biological processes. Herein, we rationally constructed the first fluorescent probe that can respond to thiols and PAA in different fluorescence channels. The probe exhibited a high selectivity and sensitivity to thiols and PAA. In addition, it displayed sequential sensing ability when the thiols and PAA coexisted. The application experiments indicated that the probe can be used for sensing thiols and PAA in human blood serum. Moreover, the fluorescence imaging of endogenous thiols and PAA as well as antihypertensive drugs captopril and amlodipine in living cells were successfully conducted.  相似文献   

2.
A colorimetric and ratiometric fluorescent thiol probe was devised with diketopyrrolopyrrole (DPP) fluorophore. The probe gives absorption and emission at 523 and 666 nm, respectively. In the presence of thiols, such as cysteine, the absorption and emission band shifted to 479 and 540 nm, respectively. Correspondingly, the color of the probe solution changed from purple to yellow, and the fluorescence changed from red to yellow. The emission intensity at 540 nm was enhanced by 140-fold. The Stokes shift of probe 1 (107 nm) is much larger than the unsubstituted DPP fluorophore (56 nm). Mass spectral analysis demonstrated that besides the expected Michael addition of thiols to the C═C bonds, the CN groups of the malonitrile moieties also react with thiols to form 4,5-dihydrothiazole structure. Probe 1 was used for fluorescence imaging of intracellular thiols. In the presence of thiols, both the green and red channel of the microscopy are active. With removal of the intracellular thiols, signal can only be detected through the red channel; thus, ratiometric bioimaging of intracellular thiols was achieved. The ratiometric response of probe 1 was rationalized by DFT calculations. Our complementary experimental and theoretical studies will be useful for design of ratiometric/colorimetric molecular probes.  相似文献   

3.
In this work, we have designed and synthesized the compound Ratio-HPSSC, based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold, as a new ratiometric fluorescent probe for thiols. The ratiometric probe Ratio-HPSSC is highly selective and sensitive to thiols. Importantly, the novel ratiometric probe exhibited a remarkable change in emission color from red to blue. This key feature allows Ratio-HPSSC to be employed for thiol detection by simple visual inspection. Furthermore, we have demonstrated that Ratio-HPSSC is suitable for ratiometric fluorescence imaging of thiols in living cells. We believe that the new ratiometric probe will find interesting applications in chemistry, biology, and medicine.  相似文献   

4.
This study reports a benzothiazole-based fluorescent probe with simple structure for thiols. This probe exhibited high on/off signal ratios and good selectivity toward thiols over other analytes, and was successfully applied to the imaging of thiols in living cells.  相似文献   

5.
A novel photoconvertible fluorescent probe, which can be activated by intracellular thiols, has been synthesized. Such a molecular probe comprises three parts: a 7‐aminocoumarin phototrigger, a thiol‐removable energy acceptor, and a caged fluorescein scaffold with intracellular thiols reactivity as the fluorescent reporter. Extracellularly, the energy acceptor blocks the emission of the coumarin that regulates the photocleavage and photoactivation of the fluorescein. Intracelluarly, the high concentration of thiols releases the energy acceptor, thus activating the S1 state of the phototrigger, which emits coumarin blue fluorescence for pre‐visualization and liberates the caged green‐fluorescent fluorescein to highlight the specific cell upon illumination. Compared to traditional photoactivated organic dyes, the intracellular thiols activated probe requires double activations: one by intracellular thiols and the other by light activation. The dual activations restrict fluorescence precisely inside live cells and at the particular spatial region of light activation, thus a probe with precise spatial accuracy in live cells.  相似文献   

6.
We synthesized a new long-wavelength latent fluorimetric probe BCC (6) to detect physiologically significant thiols. The fluorogenic chemical transformation of BCC triggered by thiols is through a tandem reaction, thiol-induced benzoquinone reduction, and quinone–methide-type rearrangement reaction, which are spontaneous and irreversible at physiological temperature in aqueous media. The fluorescence signal revealed by this process is specific and exhibited in the near-red spectrum region with emission maxima at 595 nm, and it could be competitively inhibited by thiols scavenger, N-ethylmaleimide. The fluorescent response of BCC is insensitive to various non-thiol amino acids and biological reductants. This novel fluorimetric probe demonstrates a good relationship in detecting thiols in 1–100 μM range, which presents to the applicability for the construction of fiber-optic biosensors in the future clinical diagnostic.  相似文献   

7.
A new colorimetric and fluorescent probe,2-(2,4-dinitrostyryl)-1,3,3-trimethyl-3H-indolium iodide (DTI),for selective and sensitive detection of biological thiols is reported.In aqueous solution at physiological pH 7.4,biological thiols react with DTI via Michael addition to give the brownish red adduct concomitant with fluorescence emission decrease.  相似文献   

8.
通过将香豆素的2-位内酯转化为肟基,设计、合成了一种用于基于香豆素-肟类的次氯酸根荧光探针Cou-HC。Cou-HC不仅对次氯酸根表现出快速和高选择性响应的特点,而且探针氧化后的产物不会与生物硫醇等发生反应,从而可以避免生物硫醇对于次氯酸根响应的干扰。细胞成像实验结果表明,探针可以对RAW 264.7细胞中内源性和外源性次氯酸根进行实时成像,初步证明了该探针对生命体系内次氯酸根检测的能力。  相似文献   

9.
The synthesis of a novel Tb(III) luminescent probe for the detection of thiols is presented. The probe 1.Tb, possessing a maleimide moiety, as its sulfhydryl acceptor, was poorly emitting in aqueous pH 7 solution in the absence of a thiol. However, upon addition of thiols such as glutathione (GSH), large enhancements were observed, particularly within the physiological pH range. In contrast no enhancements were observed in the presence of the oxidized form of glutathione (GSSG), except in the presence of the enzyme glutathione reductase and NADPH which enabled 1.Tb to be used to observe the enzymatic reduction of GSSG to GSH in real time.  相似文献   

10.
A coumarin-based thiol probe featuring the 1,4-addition reaction of thiols to nitroolefin was reported. The molecular probe exhibited higher selectivity toward biothiols (Cys, Hcy and GSH) than other amino acids.  相似文献   

11.
Developing methods to probe the nature and structure of nanoscale environments continues to be a challenge in nanoscience. We report a cyclic voltammetry investigation of the internal, hydrogen-bond-driven phase separation of amide-containing thiols and alkanethiols. Amide-containing thiols with a terminal ferrocene carboxylate functional group were investigated in two binary monolayers, one homogeneously mixed and the other phase separated. The electrochemical response of the ferrocene probe was used to monitor adsorbate coverage, environment, and phase separation within each of these monolayers. The results demonstrate that the behavior of ferrocene-containing monolayers can be used to probe nanoscale organization.  相似文献   

12.
A polarity-sensitive fluorescent probe MNP was rationally designed and synthesized with naphthalimide as the fluorophore and maleimide as the receptor for thiols. MNP is weakly fluorescent due to the photoinduced electron-transfer(PET) from the fluorophore to the receptor, and it displays evidently solvatochromic UV–vis and fluorescence spectra: the emission shifted from 495 nm in n-hexane to545 nm in phosphate buffer solution. Michael addition reaction between thiols and the maleimide in MNP inhibited the PET process, which led to about eight-fold fluorescence enhancement. In addition,MNP showed highly sensitivity to mercapto-containing proteins and it could detect as low as 20.4 mg/m L of BSA in PBS. MNP has potential in fluorescent imaging of thiols in living cells.  相似文献   

13.
A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated.  相似文献   

14.
A rapid, isocratic high-performance liquid chromatographic (HPLC) method is described for the determination of total homocysteine levels in human serum. Prior to reversed-phase HPLC analysis, the serum thiols were derivatized with SBD-F (ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate), a thiolspecific fluorogenic probe which is commercially available. Retention of SBD-homocysteine was sensitive to pH, and a mobile phase pH of 2.1 ensured baseline separation of serum thiols within 6 min. The method is simple, sensitive, reproducible (between-run coefficient of variation of 6.6%) and very suitable for routine determination of serum homocysteine levels in a clinical pathology laboratory.  相似文献   

15.
This paper presents a series of first-and second-generation click-modified coumarin-based fluorescent probes for thiols.These molecules demonstrate high turn-on fluorescent response and good selectivity towards aromatic thiols over other relevant reactive sulfur species,reactive oxygen species and common nucleophiles.Moreover,probe 1a can detect thiols in the reduced rabbit plasma sample.Therefore,this approach provides a particularly impressive tool for detecting thiol in biological systems.  相似文献   

16.
Kand D  Mishra PK  Saha T  Lahiri M  Talukdar P 《The Analyst》2012,137(17):3921-3924
A BODIPY-based selective thiophenol probe capable of discriminating aliphatic thiols is reported. The fluorescence off-on effect upon reaction with thiol is elucidated with theoretical calculations. The sensing of thiophenol is associated with a color change from red to yellow and 63-fold enhancement in green fluorescence. Application of the probe for selective thiophenol detection is demonstrated by live cell imaging.  相似文献   

17.
A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe(3)O(4) core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe(3)O(4) NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe(3)O(4)@PFR and Au NPs after modifying the Fe(3)O(4)@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe(3)O(4)@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components.  相似文献   

18.
Jung HS  Ko KC  Kim GH  Lee AR  Na YC  Kang C  Lee JY  Kim JS 《Organic letters》2011,13(6):1498-1501
A new chemodosimetric probe (1) is reported that selectively detects thiols over other relevant biological species by the turning on of its fluorescence through a Michael type reaction. The fluorogenic process upon its reaction was revealed to be mediated by intramolecular charge transfer, as confirmed by time-dependent density functional theory calculations. The application of probe 1 to cells is also examined by confocal microscopy, and its cysteine preference was observed by an ex vivo LC-MS analysis of the cellular metabolite.  相似文献   

19.
Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au8-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au8-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au8-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au8-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au8-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.  相似文献   

20.
We presented the design, synthesis, spectroscopy, and biological applications of DA-Cy, an on-off-on fluorescent probe to monitor H(2)O(2) oxidative stress and thiols reducing repair in living cells and tissues simply and directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号