首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The association of neuropeptide Y (NPY) with air-water interfaces and with phospholipid monolayers on water subphases and on physiological buffer has been investigated. Surface pressure (pi) versus molecular area (A) relations of the peptide at water surfaces depend on the concentration of the spreading solutions. Independent of that concentration, they show a transition from a low-density state to a high-density state at pi approximately 12 mN/m. Similar features are observed in the NPY adsorption to preformed monolayers (Deltapi(t --> infinity) as a function of pii = pi (t = 0) where t = 0 signifies the time of peptide injection). The transition is also observed in cospread lipid-NPY monolayers and is interpreted as the exclusion of the peptide from the surface layer. The reproducibility of the isotherms after expansion suggests that cospread lipid-peptide monolayers are thermodynamically stable and that the peptide remains associated with the monolayer after exclusion from the lipid surface. A comparison of NPY association with zwitterionic and with anionic lipids as well as a comparison of the interactions on pure water and on physiological buffer suggest that electrostatic attraction plays a major role in the energetics of peptide binding to the membrane surface. Dual label fluorescence microscopy demonstrates that the peptide associates preferentially with the disordered, liquid condensed monolayer phase and also suggests that it self-aggregates upon exceeding a critical surface concentration. A NPY variant with a distorted alpha-helix interacts with the surface as strongly as the natural NPY but expands the monolayers more. This suggests that the helix motif in the peptide is more important for the interaction with the receptor than for binding of the peptide to the membrane surface. In context, these observations attribute a specific role to the membrane in funneling the signal peptide to its membrane receptor.  相似文献   

2.
An organo-soluble, peptide-polymer conjugate that combines poly(n-butyl acrylate) with a beta-sheet-forming peptide is spread at the water surface to investigate peptide-guided self-assembly in a two-dimensional environment. Single layers of the conjugate are studied to gain information on the packing, orientation, and structure of the conjugate molecules using standard monolayer techniques: isotherms, grazing incidence X-ray diffraction (GIXD), and infrared reflection absorption spectroscopy (IRRAS). At all conditions studied, the stabilizing beta-sheet network consists of antiparallel beta-sheets oriented parallel to the air/water interface. The incorporation of temporary switch defects in the peptide segment enables beta-sheet assembly to be triggered at different packing densities. Stable monolayers, with low compressibilities similar to peptide monolayers, form when beta-sheet assembly occurs in monolayers that contain closely packed conjugate molecules. Langmuir-Schaefer transfer of the switched monolayer seeded with 1/1000 part stearic acid results in a transferred monolayer containing ordered domains with 7 nm wide stripes, a width in agreement with the end-to-end distance of the conjugate molecule. In this interfacial system, high packing densities and a hydrophobic seed molecule play an important role in beta-sheet network and structure formation. Both effects likely direct the highly ordered beta-sheet structure because of beta-strand prealignment. Insights gained from self-assembly in this system can be applied to peptide aggregation mechanisms in more complex interfacial environments.  相似文献   

3.
The variation in the morphology of monolayers at the air/water interface is investigated for two kinds of radiation-modified polysilanes with different structures: poly(diethyl fumarate)-grafted poly(methyl-n-propylsilane) (PMPrS-g-PDEF) and maleic anhydride-grafted PMPrS (PMPrS-g-MAH). PMPrS-g-PDEF has long but sparsely-attached PDEF graft chains, while PMPrS-g-MAH has short but densely-attached MAH graft units. Surface pressure-area measurements indicate that PMPrS-g-PDEF monolayers extensively spread at the air/water interface though PMPrS homopolymer hardly spreads. AFM observation reveals that PMPrS-g-PDEF monolayers have an inhomogeneous structure containing string-like microstructures. This result suggests that PMPrS main chains are detached from the water surface to aggregate together and only PDEF chains spread over the water surface. In contrast, PMPrS-g-MAH forms uniform monolayers with a smooth surface. PMPrS main chains of PMPrS-g-MAH are anchored to the water surface by densely grafted MAH units. It is also demonstrated that only the PMPrS-g-MAH monolayers are successfully deposited layer-by-layer on a solid substrate by the Y-type deposition.  相似文献   

4.
A new concept enables the generation of cell microenvironments by microobject assembly at an water/air interface. As the orientation of 30 μm sized polymer cubes and their capillary force assembly are controlled by the surface wettability, which in turn can be modulated by coating the initially exposed surfaces with gold and self‐assembled monolayers, unique niches in closely packed arrays of cubes with vertex up orientation can be realized. The random assembly of distinctly different cubes, prefunctionalized or surface‐structured exclusively on their top surface, facilitates the parallel generation of different microenvironments in a combinatorial manner, which paves the way to future systematic structure–property relationship studies with cells.  相似文献   

5.
A new concept enables the generation of cell microenvironments by microobject assembly at an water/air interface. As the orientation of 30 μm sized polymer cubes and their capillary force assembly are controlled by the surface wettability, which in turn can be modulated by coating the initially exposed surfaces with gold and self‐assembled monolayers, unique niches in closely packed arrays of cubes with vertex up orientation can be realized. The random assembly of distinctly different cubes, prefunctionalized or surface‐structured exclusively on their top surface, facilitates the parallel generation of different microenvironments in a combinatorial manner, which paves the way to future systematic structure–property relationship studies with cells.  相似文献   

6.
Amphiphilic derivative of the laminin peptide YIGSR and three other mutated peptides with mutation at Y with V (valine), I (isoleucine), and L (leucine) have been synthesized. The monolayer formation and the stability of these peptide analogues at air/water interface and the interaction with phospholipid monolayers have been studied using surface pressure-molecular area (pi-A) and surface potential-molecular area (DeltaV-A) isotherms. The single amino acid mutation in the native sequence leads to appreciable changes in surface activity, orientation and insertion into lipid monolayers with LIGSR showing most hydrophobic character while YIGSR showed most polar nature. The morphology of spread monolayers in the most close packed state was carried out using Brewster angle microscopy (BAM). LB films of these amphiphilic peptide derivatives transferred to hydrophilic quartz surfaces and hydrophobically modified surfaces showed significant changes in the work of adhesion as well as spreading behavior of water with the L substituted sequence showing maximum work of adhesion and the native sequence YIGSR, the least work of adhesion. From theoretical estimates, the long-range effects of the different amino acid residues in position 1 on the alkyl chains have been studied from charge on the carbon and hydrogen atoms of the alkyl tails. The present study demonstrates that amphiphilic derivatives of the laminin peptide YIGSR show enhanced activity compared to the original sequence. This work shows that the amino acid substituents on the head group clearly influence the distal methylene groups of the tail. Thus, any mutation of even single amino acid in a peptide sequence influences and plays an important role in determining macroscopic properties such as surface energy and adhesion both at air/solution and solid/solution interfaces.  相似文献   

7.
Different models recently used to characterize adsorbed and Langmuir monolayers at the water/air interface are reviewed in this paper. Methods for the determination of the orientation of molecules at the surface are described and compared.  相似文献   

8.
A useful approach to get information about the potential fusogenic ability of virus synthetic peptides is the study of its interfacial properties and subsequent study in mono- and bilayers. In this work, we have characterized by means of physicochemical tools (i.e. compression isotherms and surface activity) the sequence 267-284, LLGTEVSEVLGGAGLTGG, derived from the E2 structural protein of HGV/GBV-C. The adsorption of the peptide at the air/water interface was monitored by following the increase in surface pressure as a function of time at two different pH values: 5 and 7. Parameters such as surface excess or molecular area were calculated from the equation of Gibbs. The peptide showed a tendency to migrate to the surface of a saline-buffered solution. It formed stable monolayers at the air/water interface giving a compression isotherm with a shape consistent with that of some alpha-helical peptide conformations. Brewster angle microscopy (BAM) showed that through compression the peptide formed multilayers. The studies with lipid monolayers (DPMC, DMPC/DMPG, and DMPC/DMTAP) showed that the peptide interacts with all the lipids assayed producing a marked disrupting effect upon them. In these effects electrostatic interactions seem to have some participation.  相似文献   

9.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

10.
The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.  相似文献   

11.
Infrared and Raman spectroscopies are now currently used to obtain molecular information (orientation, conformation, organization) on monolayers at the air–water interface. In the past year, several original studies were performed on peptides and proteins and their interaction with phospholipidic monolayers.  相似文献   

12.
Properties of mixed monolayers of lipid-photosynthetic reaction center proteins (RC) were studied and the optimum conditions for stable films fabrication were determined. The following synthetic: N-acryloylphosphatidylethanolamine (ACPE), tetracosa-11, 13-diinoic acid (TDA), pentacosa-10, 12-diinoic acid (PDA), dioctadecyldienoylphosphatidylcholine (DODL) and natural lipids: L-α-phosphatidylethanolamine (PE), L-α-phosphatidylcholine (PC) were used. The rate of polymerization of the mixed ACPE-RC and TDA-RC monolayers is lower in comparison with corresponding values for pure lipid-like monomers on air/water interface. The optical and photoelectrical measurements provide evidence for an orientation of RCs on interface. Hydrophilic H-subunit in monomeric and polymeric ACPE-RCs, and monomeric DODL-RCs monolayers is preferentially oriented towards water as in the pure RC monolayers. Opposite orientation was found with TDA-RCs and PDA-RCs films. No preferential orientation for lipid-RCs from C. aurantiacus monolayers was found because of the RCs having low assymmetry of hydrophobic subunits (M and L).  相似文献   

13.
Using the Langmuir technique, we have studied the properties at the air/water interface and the interaction of the hepatitis G virus synthetic peptide E1(53-66) and its palmitoyl derivative with membrane phospholipids. These phospholipids had different characteristics referring to the net charge and saturation of the acyl chain. The palmitoyl derivative was more stable at the air/water interface and in the kinetic at constant area measurements showed higher incorporation to the monolayer. The interaction was higher for saturated phospholipids and those with a negative net charge. When the peptides were in the subphase, they produced changes in the miscibility of mixed monolayers composed of DPPC/DPPG or DOPC/DOPG. It can be deduced from the results obtained that electrostatic interactions play a major role, but when the peptide is derivatized with the palmitoyl chain, hydrophobic interactions are added to the former ones. The interaction is also influenced by the saturation of the acyl chain.  相似文献   

14.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

15.
Neutron reflectivity has been used to determine the thickness and surface coverage of monolayers of two 14-residue beta-hairpin peptides adsorbed at the air/water interface. The peptides differed only in that one was labeled with a fluorophore, while the other was not. The neutron reflection measurements were mainly made in null reflecting water, NRW, containing 8.1% D(2)O. Under this isotopic contrast the water is invisible to neutrons and the specular signal was then only from the peptide layer. At the highest concentration of ca. 4 microg/mL studied, the area per peptide molecule (A) was found to be 230 +/- 10 and 210 +/- 10 A(2) for the peptides with and without a BODIPY-based fluorophore, respectively. The thickness of the peptide layers was about 10 A for a Gaussian distribution. With decreasing bulk peptide concentration, both surface excess and layer thickness showed a steady trend of decrease. While the neutron results clearly indicate structural changes within the peptide monolayers with increasing bulk concentration, the outstanding structural feature is the formation of rather uniform peptide layers, consistent with the structural characteristics typical of beta-strand peptide conformations. These structural features are well supported by the parallel measurements of the adsorbed layers in D(2)O. With this isotopic contrast the neutron reflectivity provides an estimate about the extent of immersion of the peptide layers into water. The results strongly suggest that the 14-mer peptide monolayers were fully afloat on the surface of water, with only the carboxy groups on Glu residues hydrated.  相似文献   

16.
In order to elucidate the influence on the lipidic environment on the recognition process of its membrane associated receptor, the interactions of the vasoconstrictor peptide endothelin 1 with various phospholipids have been investigated using different lipidic model membranes: monolayers at constant surface pressure, vesicles and micelles. A monolayer study of ET1 adsorbed onto the water surface has shown that the C-terminus of the peptide points towards the aqueous phase. Penetration measurements into lipidic monolayers indicate that ET1 adsorbs to phospholipids with an orientation similar to that of the air–water interface and fluorescence measurements are in agreement with such an orientation of the peptide. This adsorption is selective for neutral phospholipids and indicates that the nature of the phospholipid headgroups is of major importance for the approach of the membrane associated receptor.  相似文献   

17.
In this work, the surface and fluorescent behavior of three phospholipids containing a pyrene molecule in one of their hydrocarbon chains was studied. Differences between the isotherms provided by the different monolayers can be attributed to the orientation of the head group in the phospholipids at the air/water interface. This assertion is supported by the fluorescent behavior of monolayers of phospholipids containing labeled pyrene (Py-DPPE, Py-DPPC, and Py-DPPG).  相似文献   

18.
The complexation of beta-cyclodextrin with monolayers of cholesterol, DMPC, DMPG, and mixtures of those lipids has been studied using Brewster microscopy, PMIRRAS, and ab initio calculations. An oriented channel-like structure of beta-cyclodextrin, perpendicular to the air/water interface, was observed when some cholesterol molecules were present at the interface. This channel structure formation is the first step in the cholesterol dissolution in the subphase. With pure DMPC and DMPG monolayers, weaker, less organized complexes are formed, but they disappear almost completely at high surface pressure, and only a small amount of phospholipid is dissolved in the subphase.  相似文献   

19.
The dynamic adsorption and penetration of human serum albumin (HSA) into the monolayers of five biologically important surfactants—DSPC, DPPC, DMPC, DMPE and DMPA—were systematically studied using Brewster angle microscopy, film balance and pendent drop techniques. Isotherms after different adsorption times show that the presence of HSA changed the monolayer phase behavior (e.g. the shifts of the LE→LC phase transition in the mixed phospholipid/HSA monolayers). Apparent inhomogeneous phases—‘honey-comb’ (J. Mol. Liq., 2001, 90, 149), ‘block’ or ‘stripe’ shape phases are formed due to the adsorption and penetration of HSA into these phospholipid monolayers at the air/water interface. Both the phase behavior changes and the morphological changes were confirmed by our recent structure studies in DPPA/HSA and DPPS/HSA monolayers using X-ray diffraction at grazing incidence, which directly shows that HSA penetration can change the tilt angle of phospholipids. It was found that the adsorption and penetration of HSA strongly depends on the phospholipid head-group structure and the physical state of the phospholipid films. The latter played a dominant role by providing enough space for the penetration of HSA and affecting the hydrophobic interactions of HSA with the aliphatic chains of phospholipids in monolayers at the air/water interface. In general, HSA penetrates more efficiently and quickly into monolayers of phospholipids in liquid state (e.g. DMPC compared to DSPC) and with unprotected charges (e.g. PA compared to PE and PC).  相似文献   

20.
Monolayers of 2-docosylamino-5-nitropyridine (DCANP) at the air/water interface were investigated by UV/Vis spectroscopy. The combination of this method with the classic constant-area relaxation technique yields insight into the longtime stability and the collapse behavior of monolayers. We have demonstrated that monolayers of DCANP are certainly stable under standard deposition conditions. At surface pressures above 20 mN/m monolayer instabilities lead to the formation of a three-dimensional head-to-head multilayered structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号