首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of donor-acceptor complexes of syn-benzoyl azide, its 2-methyl- and 2,6-dimethyl-substituted derivatives with BF3, AlCl3, and SbCl5, and the corresponding transition states of the rearrangement into isocyanates were studied by the PBE/TZ2P method in the framework of the density functional theory (DFT). The complexes are formed at the oxygen and nitrogen atoms of the acyl azide group and have the composition 1: 1 or 1: 2 depending on the Lewis acid (L) structure. The complexes at the oxygen atom are more stable; the most stable complexes are formed by the reactions of acyl azides with AlCl3. Complex formation with Lewis acids decreases the activation energy of the transformation of acyl azides into isocyanates owing to the +M effect and stabilization of the Ar-C(O-L(1?))=N(1)-N(2)(1+)≡N(3) mesomeric form. The activation energy decreases with an increase in the number of ortho-methyl substituents in benzoyl azide due to the +I effect of the phenyl group. The turn of the phenyl ring at almost 90° with respect to the CON3 group is needed for the rearrangement to occur, and the energy necessary for this process is ~8 kcal mol?1.  相似文献   

2.
Density functional theory (DFT), CCSD(T), and CBS-QB3 calculations were performed to understand the chemical and reactivity differences between acetylnitrene (CH(3)C(=O)N) and methoxycarbonylnitrene (CH(3)OC(=O)N) and related compounds. CBS-QB3 theory alone correctly predicts that acetylnitrene has a singlet ground state. We agree with previous studies that there is a substantial N-O interaction in singlet acetylnitrene and find a corresponding but weaker interaction in methoxycarbonylnitrene. Methoxycarbonylnitrene has a triplet ground state because the oxygen atom stabilizes the triplet state of the carbonyl nitrene more than the corresponding singlet state. The oxygen atom also stabilizes the transition state of the Curtius rearrangement and accelerates the isomerization of methoxycarbonylnitrene relative to acetylnitrene. Acetyl azide is calculated to decompose by concerted migration of the methyl group along with nitrogen extrusion; the free energy of activation for this concerted process is only 27 kcal/mol, and a free nitrene is not produced upon pyrolysis of acetyl azide. Methoxycarbonyl azide, on the other hand, does have a preference for stepwise Curtius rearrangement via the free nitrene. The bimolecular reactions of acetylnitrene and methoxycarbonylnitrene with propane, ethylene, and methanol were calculated and found to have enthalpic barriers that are near zero and free energy barriers that are controlled by entropy. These predictions were tested by laser flash photolysis studies of benzoyl azide. The absolute bimolecular reaction rate constants of benzoylnitrene were measured with the following substrates: acetonitrile (k = 3.4 x 10(5) M(-1) (s-1)), methanol (6.5 x 10(6) M(-1) s(-1)), water (4.0 x 10(6) M(-1) s(-1)), cyclohexane (1.8 x 10(5) M(-1) s(-1)), and several representative alkenes. The activation energy for the reaction of benzoylnitrene with 1-hexene is -0.06 +/- 0.001 kcal/mol. The activation energy for the decay of benzoylnitrene in pentane is -3.20 +/- 0.02 kcal/mol. The latter results indicate that the rates of reactions of benzoylnitrene are controlled by entropic factors in a manner reminiscent of singlet carbene processes.  相似文献   

3.
A combined experimental and theoretical study addresses the concertedness of the thermal Curtius rearrangement. The kinetics of the Curtius rearrangements of methyl 1-azidocarbonyl cycloprop-2-ene-1-carboxylate and methyl 1-azidocarbonyl cyclopropane-1-carboxylate were studied by (1)H NMR spectroscopy, and there is close agreement between calculated and experimental enthalpies and entropies of activation. Density functional theory (DFT) calculations (B3LYP/6-311+G(d,p)) on these same acyl azides suggest gas phase barriers of 27.8 and 25.1 kcal/mol. By comparison, gas phase activation barriers for the rearrangement of acetyl, pivaloyl, and phenyl azides are 27.6, 27.4, and 30.0 kcal/mol, respectively. The barrier for the concerted Curtius reaction of acetyl azide at the CCSD(T)/6-311+G(d,p) level exhibited a comparable activation energy of 26.3 kcal/mol. Intrinsic reaction coordinate (IRC) analyses suggest that all of the rearrangements occur by a concerted pathway with the concomitant loss of N2. The lower activation energy for the rearrangement of methyl 1-azidocarbonyl cycloprop-2-ene-1-carboxylate relative to methyl 1-azidocarbonyl cyclopropane-1-carboxylate was attributed to a weaker bond between the carbonyl carbon and the three-membered ring in the former compound. Calculations on the rearrangement of cycloprop-2-ene-1-oyl azides do not support pi-stabilization of the transition state by the cyclopropene double bond. A comparison of reaction pathways at the CBS-QB3 level for the Curtius rearrangement versus the loss of N2 to form a nitrene intermediate provides strong evidence that the concerted Curtius rearrangement is the dominant process.  相似文献   

4.
Density functional theory (DFT) calculations are employed to compare the mechanism of the *OH attacks at all carbon atoms in quinoline. The computational analysis of the energy surface for the reaction of *OH with quinoline reveals that the formation of OH adducts proceeds through exothermic formation of pi-complexes/H-bonded complexes. The gas-phase reactions have activation energies ranging from <1.3 kcal/mol for the attack at positions C3 through C8 to 8.6 kcal/mol for the attack at the C2 position. Solvation, as described by the CPCM cavity model, lowers these activation barriers so that the attack at all carbon atoms except C2 is effectively barrierless. The *OH attack at C2 in solution is significantly different than at all other quinoline positions because it involves the only transition structure with energy higher than that of the starting materials and with an energetic barrier of 5.1 kcal/mol. The specific solvation approach also corroborates this finding because the attack at C2 was shown to have an energy barrier of 2.3 kcal/mol compared to the barrierless attack at C5. These results are in agreement with our recent experimental studies but differ from literature reports on the degradation of quinoline using the photo-Fenton reaction.  相似文献   

5.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

6.
The interaction between methane and gold(I) acetylacetonate via electrophilic substitution (reaction (I)) and oxidative addition (reaction (II)) is simulated. In both cases, the formation of the products is thermodynamically favorable: the decrease in energy is 31 kcal/mol for reaction (I) and 26 kcal/mol for reaction (II). The product of reaction (II) is additionally stabilized by Au-H interaction. Both reactions have a low activation barrier and proceed via the formation of structurally different methane complexes reducing the energy of the system by 9.3 kcal/mol for reaction (I) and by 10.9 kcal/mol for reaction (II). The complex [Au(H2O)(acac)] is also capable of forming methane complexes. These complexes result from a thermally neutral reaction and turn into products after overcoming a low energy barrier. The structure of the complex activating methane in the gold-rutin system is deduced from the data obtained.  相似文献   

7.
In the framework of the MP2/6-311++G**//RHF/6-31G* ab initio approach we investigated the structure and relative stability of the imine (-CHR-CH=N-) and enamine (-CR=CH-NH-) forms of the simplest imines, oximes, and their ethers. Although the enamine form is unstable, double bond migration R2CH-CH=N-→ R2C=CH-NH-is often regarded as one of the stages of a series of reactions that take place in superbasic media, in particular, synthesis of pyrroles from ketoximes and acetylene. For isomerization of E-ethaneimine CH3-CH=NH to vinylamine CH2=CH-NH2, calculations predict an increase of 4.3 kcal/mol in energy. A close value (4.8 kcal/mol) was obtained for the energy of isomerization of ketimine (CH3)2C=NH to 2-aminopropene. The methyl group in CH3-CH=CH-NH2 stabilizes the neighboring double bond, and the transformation of E-propane-1-imine into E-and Z-aminoprop-1-ene is accompanied by an increase of 2.8 kcal/mol in energy. After the transition from imines to oximes, the enamine form is drastically destabilized. The highly endothermal character of the CH3-CH=NOH → CH2=CH-NHOH rearrangement (16.4 kcal/mol) is retained from acetaldoxime to its methyl ether and decreases by only 1.0 kcal/mol for the isomerization reaction of the vinyl ether of acetaldoxime to N,O-divinylhydroxylamine. These rearrangements are thermodynamically unfavorable probably because of the increased negative charge on the nitrogen atom and, as a consequence, destabilization of the N-O bond.  相似文献   

8.
Surprising catalytic activities have been found for the actinide complexes Cp*(2)ThMe(2) (1), Th(NEtMe)(4) (2), and Me(2)SiCp'(2)Th(C(4)H(9))(2) (3) toward oxygenated substrates. During the catalytic dimerization of benzaldehydes to their corresponding esters, complexes 1 and 2 gave 65 and 85% yield in 48 h, respectively, while the geometry-constrained complex 3 gave 96% yield in 24 h. Exploring the effect of substituents on benzaldehyde, it has been found that, in general, electron-withdrawing groups facilitate the reaction. Kinetic study with complexes 1 and 3 reveals that the rate of the reaction is first order in catalyst and substrate, which suggests the rate equation "rate = k[catalyst](1)[aldehyde](1)". The activation energy of the reaction was found to be 7.16 ± 0.40 and 3.47 ± 0.40 kcal/mol for complexes 1 and 3 respectively, which clearly indicates the advantage of the geometry-constrained complex. Astonishing are the reactivity of the organoactinide complexes with oxygen-containing substrates, and especially the reactivity of complex 3, toward the dimerization of substrates like p-methoxybenzaldehyde, m/p-nitrobenzaldehyde, and furanaldehyde and the reactivity toward the polymerization of terephthalaldehyde. Density functional theory mechanistic study reveals that the catalytic cycle proceeds via an initially four-centered transition state (+6 kcal/mol), followed by the rate-determining six-centered transition state (+13.5 kcal/mol), to yield thermodynamically stable products.  相似文献   

9.
The thermal decomposition of formyl, acetyl, and benzoyl azides to the corresponding isocyanate and nitrogen has been treated theoretically using ab initio molecular orbital calculations at the Møller–Plesset type 2 (MP2)(full)/6‐31G* level. The reaction is stimulated by elongation of N N bond and is followed until the formation of the isocyanate and expulsion of nitrogen. The decomposition of formyl azide proved to be a concerted one‐step reaction without the formation of a nitrene intermediate. In contrast, the conversion of both acetyl and benzoyl azides to the corresponding isocyanate and nitrogen is a two‐step reaction, and a nitrene intermediate is formed. One transition state is located and identified during the course of the conversion of formyl azide, but two transition states are located and identified during the course of the conversion of acetyl and benzoyl azides. The thermodynamic functions, ΔEr and ΔHr, of the studied reactions are calculated. The results predict that the ease of conversion of the acyl azide to the isocyanate and nitrogen goes in the order: formyl azide > acetyl azide > benzoyl azide. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

10.
The structure and reactivity of the radical anion center in ZSM-5 zeolite were studied by the density functional theory method. It was shown that the interaction of the hydrogen zeolite form with adsorbed olefins and aromatic hydrocarbons could be accompanied by electron transfer from hydrocarbon molecules to the Broensted acid center with the formation of a radical anion fragment. The radical anion fragment formed is unstable, which contributes to the probability of the exothermic process (ΔE = ?21 kcal/mol) of atomic hydrogen detachment with the activation energy not exceeding 10–12 kcal/mol. The atomic hydrogen split off can initiate hydrocarbon transformations, and such a radical anion center can play the role of a catalytic activity carrier on acid zeolites.  相似文献   

11.
The kinetics of the oxidative dechlorination of CCl4 on two supported catalysts for methane oxychlorination (CuCl2-KCl and CuCl2-KCl-LaCl3) at 350–425°C was studied using a gradientless method. Although these catalysts exhibited different activities, the rate of reaction on them was described by one exponential equation at the same activation energy of E ≈ 26.3 kcal/mol. A two-path reaction mechanism was proposed, which involved the dissociative adsorption of initial reactants and chlorine with the formation of phosgene and the oxidation of phosgene to CO2. The occurrence of two types of active sites on the catalyst surface was assumed.  相似文献   

12.
Awad WI  Gawargious YA  Hassan SS 《Talanta》1967,14(12):1441-1448
A simple, rapid and accurate micro-method for the analysis of mono- and diazide organic compounds is described. It is based on the Curtius rearrangement reaction. Glacial acetic acid is found to be the best decomposition medium. The acyl azide function yields two nitrogen atoms per azide group, but the diazides investigated ultimately give five nitrogen atoms per group on oxidation of their decomposition products, with acidified cerium(IV) sulphate solution. The decomposition time varies from 10 min for monoazides to 20 min for diazides. Accurate results were obtained for a representative series of 18 mono-and diazides.  相似文献   

13.
It is suggested that a set of discrete Cu nanoclusters satisfying the conditions of structural and electron stability should be used as models of active sites on supported metal catalysts. The close-packed Cu20 tetrahedral nanocluster that satisfies these two conditions was taken as a base model of active sites on supported copper catalysts. Theoretical analysis of two possible mechanisms of C-Cl bond dissociation of 1,2-dichloroethane on copper catalysts was performed by the density functional theory method. The first mechanism involves sequential splitting of C-Cl bonds in the molecule in three stages with further stabilization of chloroalkyl intermediates (stepwise mechanism). All these stages are activated. The limiting stage is the one that corresponds to dissociation of the first C-Cl bond with an activation energy of E# = 34.3 kcal/mol. The second mechanism corresponds to the simultaneous elimination of two chlorine atoms from 1,2-dichloroethane with liberation of ethylene in the gas phase; this is a one-stage process with an activation energy of E# = 26.1 kcal/mol (direct mechanism). A comparison of the two reaction routes shows that the direct mechanism is most probable on copper catalysts.  相似文献   

14.
The Schmidt reaction is the acid-catalyzed analogue of the Curtius reaction and is extensively used in organic synthesis. In this work, the mechanism of this reaction has been explored using DFT calculations at the B3LYP/6-311+G(d,p) level. Protonated formyl azide may undergo rearrangement to the product, protonated isocyanic acid, with simultaneous extrusion of molecular nitrogen (concerted mechanism), or undergo rearrangement to the anti conformer, followed by removal of nitrogen to form the nitrenium ion, which then rearranges to the final product, protonated isocyanic acid (step-wise mechanism). Like the Curtius reaction, it is found that the concerted pathway is definitely preferred. The key role of acidification in decreasing the overall energy barrier is more highlighted in case of phenyl substitution, with negligible effect on the lower homologues. For methoxy and amine substituents, there is very little difference in the activation energies of the concerted and step-wise reactions, with the former being still slightly preferred. Unlike the parent compound, the rearrangement of substituted nitrenium ion in some cases involves side reactions like C-H insertion and cyclization.  相似文献   

15.
Hetero Diels-Alder (HDA) reactions between 2,3-dimethyl-1,3-butadiene and diethyl ester of aroyl phosphonates catalyzed by AlCl3 to afford (3,6-dihydro-2H-pyran-2-yl) phosphonate derivatives were investigated. Aroyl phosphonates with electron-withdrawing groups generally resulted in better isolated chemical yields. A stoichiometric amount of AlCl3 rather than a catalytic amount was necessary to activate the cycloaddition reaction. The amount of AlCl3 catalyst and its effect on LUMO of ethyl ester benzoyl phosphonate were also investigated by performing density functional theory (DFT) (B97D/6-31+G(d,p)) computations in dichloromethane. An increased loading of AlCl3 induced a considerable decrease in the LUMO energy of ethyl ester of benzoyl phosphonate. The computed Gibbs free activation energy is 17.03 kcal/mol in DCM at 0°C using the same computational level.  相似文献   

16.
Possible reaction pathways of nitroethylene with the Si(100)-2 x 1 surface have been investigated by unrestricted density functional theory. The facile occurrence of the studied reactions was demonstrated by the low activation energies of the rate-determining steps (1.07-5.23 kcal/mol). It was found that the [4 + 2] cycloaddition reaction of nitroethylene is most kinetically favorable. The isomerization reactions of the addition products were also investigated. The [3 + 2] cycloaddition product may further undergo a rearrangement by overcoming a 12.37 kcal/mol activation energy barrier into an isomer, with an oxygen atom of the nitryl group inserted between two silicon atoms of the Si(100) surface.  相似文献   

17.
Interaction between pyrrole and its 2-vinyl, 2-azo, and 2-phenylazo derivatives with acetylene in the gas phase and DMSO was studied using the MP2/6-311++G**//MP2/6-31G* ab initio approach and including the solvation effects within the framework of the continuum model. Possible reasons are considered for the hindered character of direct vinylation of azopyrroles with acetylene in superbasic media. The introduction of the azo group in the 2 position of the pyrrole ring leads to the increased stability of the pyrrole anion and increased acidity from pK a = 22.1 for pyrrole and pK a = 20.5 for vinylpyrrole to pK a = 16.6 and 16.4 for 2-azopyrrole and 2-phenylazopyrrole, respectively. The binding energy between the pyrrole anion and the acetylene molecule decreases concurrently. The heat of formation of the pyrrole anion adducts with acetylene changes from ΔH = 4.8 kcal/mol for pyrrole to ΔH = 22.4 kcal/mol for 2-phenylazopyrrole. For all anion adducts under study, preferable isomers are Z isomers formed by the interaction of pyrrole anions with the cis-distorted acetylene molecule, but the formation of the E isomers corresponds to a lower activation barrier, which explains known Z stereoselectivity of the nucleophilic addition to monosubstituted acetylenes. When an azo group is introduced, the reaction becomes more endothermal, and the energy barriers to the formation of both Z and E isomers increase. Among other reasons for lowering of the activity of 2-arylazopyrroles during vinylation we consider possible reaction of acetylene addition at the most remote nitrogen atom of the azo group and participation of the anion center in cation chelation (K+ in the calculation).  相似文献   

18.
Conformational properties of a benzenesulfonic acid hydrazide molecule and its para-nitro and para-methyl derivatives, which have found wide application as porofors and biologically active compounds, are studied. It is found that the benzenesulfonic acid hydrazide molecule has six conformers with relative energies of 0//0 kcal/mol, 0.34//0.98 kcal/mol, 2.51//2.25 kcal/mol, 2.54//2.56 kcal/mol, 2.90//3.28 kcal/mol, 6.64//6.43 kcal/mol (MP2//DFT(B3LYP) with the cc-pVTZ basis set), each conformer has enantiomer. The conformers differ from each other in the relative orientation of the fragments of the–SO2NHNH2 group, the energies of the frontier orbitals, the direction and value of the dipole moments. It is shown that the introduction of a nitro or methyl group into the para-position practically does not affect the conformational properties of the sulfonyl hydrazide group. Change in the structure of benzenesulfonic acid hydrazide during the crystal–gas transition is considered and it is revealed that in the crystal the conformation similar in structure to one of the high-energy conformers of the free molecule is stabilized. The NBO analysis of the electron density distribution is performed and it is shown that the occurrence of the gauche effect in all conformers of the molecules under study can be interpreted by the manifestation of the total action of strong anomeric effects between the lone pairs of nitrogen atoms and antibonding orbitals of S=O, N–H, C–S, and N–S bonds.  相似文献   

19.
The structures and energies of the reactants, products, and transition states of the initial steps in the gas-phase decomposition of dimethylnitramine (DMNA) have been determined by quantum chemical calculations at the B3LYP density-functional theory, MP2, and G2 levels. The pathways considered are NO2 elimination, HONO elimination, and nitro-nitrite rearrangement. The NO2 elimination is predicted to be the main channel of the gas-phase decomposition of DMNA in accord with experiment. The values of the Arrhenius parameters, log A=16.6+/-0.5 and Ea=40.0+/-0.6 kcal/mol, for the N-NO2 bond-fission reaction were obtained using a canonical variational theory with B3LYP energies and frequencies. The HONO-elimination channel has the next lowest activation energy of 44.7+/-0.5 kcal/mol (log A=13.6+/-0.5) and is characterized by a five-member transition-state configuration in which a hydrogen atom from one of the methyl groups is transferred to an oxygen atom of NO2. Tunneling contributions to the rate of this reaction have been estimated. The nitro-nitrite rearrangement reaction occurs via a transition state in which both oxygen atoms of NO2 are loosely bound to the central nitrogen atom, for which Rice-Ramsperger-Kassel-Marcus theory predicts log A=14.4+/-0.6 and Ea=54.1+/-0.8 kcal/mol.  相似文献   

20.
We expand the scope of the Bergman cyclization by exploring computationally the rearrangement of two osmaenediynes and one rhodaenediyne. The three hypothetical metallaenediynes are constructed by substituting the 14-electron Os(PH3)3 fragment for the C fragment, or the 15-electron Os(PH3)3H or Rh(PH3)3 fragments for the sp2 CH fragment, of 3-ene-1,5-diyne. This replacement is guided by the isolobal analogy and previous metallabenzene chemistry. The rearrangement of osmaenediyne with an Os(PH3)3 fragment in place of C is exothermic by 3 kcal/mol (the parent Bergman reaction is computed to be endothermic by 5 kcal/mol) and associated with a significant decrease in the barrier to rearrangement to 13 kcal/mol (the Ea of the parent reaction computed at the same level of theory is 33 kcal/mol). The replacement of a CH by the isolobal analogue Os(PH3)3H reduces the energy of activation for the rearrangement to 23 kcal/mol and produces a corresponding metalladiradical that is 8 kcal/mol less stable that the corresponding osmaenediyne. The activation energy corresponding to the rearrangement of the rhodaenediyne is the same as that of the organic parent enediyne. Interesting polytopal rearrangements of metallaenediynes and the diradical nature of the resulting intermediates are also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号