首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the construction of an optimum ground state for a quantum spin-3/2 antiferromagnet. The spins reside on a decorated square lattice, in which the basis consists of a plaquette of four sites. By using the vertex state model approach we generate the ground state from the same vertices as those used for the corresponding ground state on the hexagonal lattice. The properties of these two ground states are very similar. Particularly there is also a parameter-controlled phase transition from a disordered to a Néel ordered phase. In the regime of this transition, ground state properties can be obtained from an integrable classical vertex model. Received 28 June 1999  相似文献   

2.
We continue the study of valence-bond solid antiferromagnetic quantum Hamiltonians. These Hamiltonians are invariant under rotations in spin space. We prove that a particular two-dimensional model from this class (the spin-3/2 model on the hexagonal lattice) has a unique ground state in the infinite-volume limit and hence no Néel order. Moreover, all truncated correlation functions decay exponentially in this ground state. We also characterize all the finite-volume ground states of these models (in every dimension), and prove that the two-point correlation function of the spin-2 square lattice model with periodic boundary conditions has exponential decay.  相似文献   

3.
We find all the exact eigenstates and eigenvalues of a spin-1/2 model on square lattice: H=16g Sum S(y)(i)S(x)(i + empty set x)S(y)(i + empty set x + empty set y)S(x)(i + empty set y). We show that the ground states for g < 0 and g > 0 have different quantum orders described by Z2A and Z2B projective symmetry groups. The phase transition at g = 0 represents a new kind of phase transition that changes quantum orders but not symmetry. Both the Z2A and Z2B states contain Z2 lattice gauge theories at low energies. They have robust topologically degenerate ground states and gapless edge excitations.  相似文献   

4.
对于无限大尺寸两腿自旋1/2的XXZ自旋梯子模型,通过运用基于随机行走的张量网络(TN)算法数值模拟出基态波函数,首次尝试研究自旋梯子模型的约化保真度、普适序参量、纠缠熵等物理观测量,并系统研究基态保真度的三维挤点与二维分叉、约化保真度的分叉、局域序参量、普适序参量、纠缠熵和量子相变之间存在的关联关系.基于张量网络表示的算法在任意随机选择初始状态时,可以得到两腿XXZ量子自旋梯子系统简并的对称破缺基态波函数,该基态波函数是由于Z2对称破缺引起的.本文期望所提供的方法可为进一步研究凝聚态物质中热力学极限下的强关联电子量子晶格自旋梯子系统的量子相变和量子临界现象提供一种更有效的强大的工具.  相似文献   

5.
We use the matrix product formalism to find exact ground states of two new spin-1 quantum chains with nearest neighbor interactions. One of the models, model I, describes a one-parameter family of quantum chains for which the ground state can be found exactly. In certain limit of the parameter, the Hamiltonian turns into the interesting case . The other model which we label as model II, corresponds to a family of solvable three-state vertex models on square lattices. The ground state of this model is highly degenerate and the matrix product states is a generating state of such degenerate states. The simple structure of the matrix product state allows us to determine the properties of degenerate states which are otherwise difficult to determine. For both models we find exact expressions for correlation functions.  相似文献   

6.
Pyrochlore magnets can be a unique platform to demonstrate numerous important concepts and applications of frustrated magnetic physics in modern condensed matter physics. Most works on pyrochlore magnets deal with the interacting spin-1/2 local moments, while much less works have studied the spin-1 systems. We here review the physics with interacting spin-1 local moments on the pyrochlore lattice to illustrate the potentially interesting physics associated with spin-1 magnets. The generic pyrochlore spin-1 model includes the antiferromagnetic Heisenberg interaction, the Dzyaloshinskii– Moriya interaction and the single-ion spin anisotropy. The global phase diagram of this generic spin model is reviewed, and the relation between different quantum phases in the phase diagram is clarified. The critical properties of the transition from the parent quantum paramagnet to the proximate orders are discussed. The presence of quantum order by disorder in the parts of the ordered phases is analyzed. The elementary excitations with respect to the ground states are further reviewed, and the topological natures of these excitations are carefully addressed. The materials’ relevance of the spin-1 pyrochlore magnets are finally reviewed. This review may provide insights about the interesting spin-1 local moments on frustrated systems.  相似文献   

7.
Magnetoelastic properties of the spin-1/2 Ising-Heisenberg model on doubly decorated planar lattices partially amenable to lattice vibrations are examined within the framework of the harmonic approximation and decoration-iteration transformation. It is shown that the magnetoelastic coupling may lead to a spontaneous distortion of the vibrating decorating atoms and the mutual interplay between quantum spin fluctuations and local lattice deformations enhances typical quantum features like the quantum reduction of the magnetization in the ground state of the quantum antiferromagnetic phase, while it does not affect the ground-state behaviour of the classical ferromagnetic phase. It also turns out that the spontaneous distortion is responsible for a much more pronounced reduction of the critical temperature in the quantum antiferromagnetic phase than in the classical ferromagnetic phase.  相似文献   

8.
The mixed spin-(1/2, 1) Ising model on two fully frustrated triangles-in-triangles lattices is exactly solved with the help of the generalized star-triangle transformation, which establishes a rigorous mapping correspondence with the equivalent spin- 1/2 Ising model on a triangular lattice. It is shown that the mutual interplay between the spin frustration and single-ion anisotropy gives rise to various spontaneously ordered and disordered ground states, which differ mainly in an occurrence probability of the non-magnetic spin state of the integer-valued decorating spins. We have convincingly evidenced a possible coexistence of the spontaneous long-range order with a partial disorder within the striking ordered–disordered ground state, which manifests itself through a non-trivial criticality at finite temperatures as well. A rather rich critical behavior including the order-from-disorder effect and reentrant phase transitions with either two or three successive critical points is also found.  相似文献   

9.
We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.  相似文献   

10.
《Physics letters. A》2020,384(25):126629
The bipartite entanglement is rigorously examined in the spin-1/2 Ising-Heisenberg planar lattice composed of identical inter-connected bipyramidal plaquettes at zero and finite temperatures using the quantity called concurrence. It is shown that the Heisenberg spins of the same plaquette are twice stronger entangled in the two-fold degenerate quantum ground state than in the macroscopically degenerate quantum chiral one. The bipartite entanglement with chiral features completely disappears below or exactly at the critical temperature of the model, while that with no chirality may survive even above the critical temperature of the model. Non-monotonous temperature variations of the concurrence clearly evidence the activation of the entangled Heisenberg states also above classical ground state as well as their re-appearance above the critical temperature of the model.  相似文献   

11.
The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram. Received 23 April 2001  相似文献   

12.
Using the coupled-cluster method and the rotation-invariant Green's function method, we study the influence of the interlayer coupling Jperpendicular on the magnetic ordering in the ground state of the spin-1/2 J1-J2 frustrated Heisenberg antiferromagnet (J1-J2 model) on the stacked square lattice. In agreement with known results for the J1-J2 model on the strictly two-dimensional square lattice (Jperpendicular=0), we find that the phases with magnetic long-range order at small J2Jc2 are separated by a magnetically disordered (quantum paramagnetic) ground-state phase. Increasing the interlayer coupling Jperpendicular >0, the parameter region of this phase decreases, and, finally, the quantum paramagnetic phase disappears for quite small Jperpendicular approximately (0.2-0.3)J1.  相似文献   

13.
In order to study the effect of interaction and lattice distortion on quantum coherence in one-dimensional Fermi systems, we calculate the ground state energy and the phase sensitivity of a ring of interacting spinless fermions on a dimerized lattice. Our numerical DMRG studies, in which we keep up to 1000 states for systems of about 100 sites, are supplemented by analytical considerations using bosonization techniques. We find a delocalized phase for an attractive interaction, which differs from that obtained for random lattice distortions. The extension of this delocalized phase depends strongly on the dimerization induced modification of the interaction. Taking into account the harmonic lattice energy, we find a dimerized ground state for a repulsive interaction only. The dimerization is suppressed at half filling, when the correlation gap becomes large. Received: 11 February 1998 / Revised: 1st April 1998 / Accepted: 30 April 1998  相似文献   

14.
We discuss the ground state phase transition between an antiferromagnet and a valence-bond solid in a two-dimensional spin-1/2 XY model with a four-spin interaction. This transition has been proposed as a candidate for a deconfined quantum-critical point. We analyze quantum Monte Carlo data in order to accurately characterize the transition. The central question that remains to be answered is whether the transition really is continuous, or whether it is actually weakly first-order. We present the current status of both ground state and finite-temperature calculations. Based on the results, we discuss possible scenarios for the transition, none of which is consistent with deconfined quantum-criticality. However, we argue that a deconfined quantum-critical point may be located nearby in an extended parameter space.We also discuss the staggered Ising phase obtaining in the limit of strong four-spin coupling.  相似文献   

15.
Recent experiments on the "hyperkagome" lattice system Na4Ir3O8 have demonstrated that it is a rare example of a three-dimensional spin-1/2 frustrated antiferromagnet. We investigate the role of quantum fluctuations as the primary mechanism lifting the macroscopic degeneracy inherited by classical spins on this lattice. In the semiclassical limit we predict, based on large-N calculations, that an unusual q[over -->]=0 coplanar magnetically ordered ground state is stabilized with no local zero modes that correspond to local deformations of the spin configurations. This phase melts in the quantum limit and a gapped topological Z2 spin liquid phase emerges. In the vicinity of this quantum phase transition, we study the dynamic spin structure factor and comment on the relevance of our results for future neutron scattering experiments.  相似文献   

16.
姜伟  魏国柱  杜安  张起 《中国物理》2002,11(8):823-826
The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field are studied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).  相似文献   

17.
We propose a simple scheme for generating rotating atomic clusters in an optical lattice which produces states with quantum Hall and spin liquid properties. As the rotation frequencies increase, the ground state of a rotating cluster of spin-1 Bose atoms undergoes a sequence of (spin and orbit) transitions, which terminates at an angular momentum L(*) substantially lower than that of the boson Laughlin state. The spin-orbit correlations reflect "fermionization" of bosons facilitated by their spin degrees of freedom. We also show that the density of an expanding group of clusters has a scaling form which reveals the quantum Hall and spin structure of a single cluster.  相似文献   

18.
E. Rico  H.J. Briegel 《Annals of Physics》2008,323(9):2115-2131
A quantum anti-ferromagnetic spin-1 model is characterised on a 2D lattice with the following requirements: (i) The Hamiltonian is made out of nearest neighbour interactions. (ii) It is homogeneous, translational and rotational invariant. (iii) The ground state is a real singlet state of SU(2) (non-chiral). (iv) It has a local spin-1 representation. Along the way to characterise the system, connections with classical statistical mechanics and integrable models are explored. Finally, the relevance of the model in the physics of low dimensional anti-ferromagnetic Mott-Hubbard insulators is discussed.  相似文献   

19.
We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model. Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.  相似文献   

20.
We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose-Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textures. A brief exploration of the effects of spin-orbit coupling on the ground-state properties is given. We put forward proposals by using the transmission spectra of an optical cavity to probe the quantum ground states: the ferromagnetic and polar phases. Quasi-one-dimension solitons and ring dark solitons are studied. It is predicted that characteristics of the magnetic solitons in optical lattice can be tuned by controlling the long-range light-induced and static magnetic dipoledipole interactions; solutions of single-component magnetic and single-, two-, three-components polar solitons are found; ring dark solitons in spin-1 condensates are predicted to live longer lifetimes than that in their scalar counterparts. In the formation of spin textures, we have considered the theoretical model of a rapidly quenched and fast rotating trapped spin-1 Bose-Einstein condensate, whose dynamics can be studied by solving the stochastic projected Gross-Pitaevskii equations. Spontaneous generation of nontrivial topological defects, such as the hexagonal lattice skyrmions and square lattice of half-quantized vortices was predicted. In particular, crystallization of merons (half skyrmions) can be generated in the presence of spin-orbit coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号