首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Poly(N-isopropylacrylamide) (PNIPAAm) grafted with single-stranded (ss) DNA conjugate (PNIPAAm-g-DNA) self-assembles above its lower critical solution temperature to form colloidal particles. When the ssDNA within the particle hybridizes with its complementary DNA, the particles aggregate above a certain threshold of salt concentration with drastically increased turbidity in solution. Detailed structural information of the particle was obtained mainly by small-angle X-ray scattering. The influence of copolymer composition on the morphology of particle and non-crosslinking aggregation was examined. The particle consists of hydrophobic PNIPAAm core surrounded by hydrophilic DNA strands. The increase in DNA fraction brought about a significant decrease in core size, whereas the shell thickness little changed and corresponded to the length of DNA. A structural model with a sticky potential was applied to the analysis of particle aggregate. This analysis provided that the particles aggregate while the coronal layers interpenetrate each other. The interaction between the particles was quantified in terms of the sticky potential and showed a trend to be influenced by the particle size rather than the graft density of DNA strands on the particle.  相似文献   

3.
Polymeric micro- and nanogels are defined by their water-swollen hydrophilic networks that can often impart outstanding biocompatibility and high-colloidal stability. Unfortunately, this highly hydrophilic nature limits their potential in areas where hydrophobic or amphiphilic interactions are required, for example, the delivery of hydrophobic cargoes or tailored interactions with amphipathic (bio-)surfaces. To overcome this limitation, amphiphilic micro−/nanogels are emerging as new colloidal materials that combine properties from hydrogel networks with hydrophobic segments, known from solid hydrophobic polymer particles or micellar cores. The ability to accurately adjust the balance of hydrophobic and hydrophilic components in such amphiphilic colloidal systems enables new tailored properties. This opens up new applications ranging from the controlled and sustained delivery of hydrophobic drugs, over carriers for catalytic moieties, to their assembly at hydrophilic/hydrophobic interfaces, for example, as advanced stabilizers in Pickering emulsions. While promising, the synthetic realization of such amphiphilic materials remains challenging since hydrophobic and hydrophilic moieties need to be combined in a single colloidal system. As a result, adjusting the micro−/nanogel amphiphilicity often changes the colloidal features too. To overcome these limitations, various strategies have been reported. The aim of this review is to give a brief overview of important synthetic tools, considering both advantages and disadvantages, thus critically evaluating their potential in different research fields.  相似文献   

4.
The spontaneous formation of loosely bound ordered aggregates, foam, voids, chains, striations, and loops (see Figure 1a), called mesostructures hereafter, has been observed in colloidal monolayers trapped at the air-water interface. The distance between particles in these mesostructures is of the order of the particle radius (micrometers), implying that the colloidal interaction potential has a minimum at such distances, which could induce the phase separation of colloidal monolayers in dense and dilute regions. This is at odds with the accepted theory (Derjaguin-Landau-Verwey-Overbeek (DLVO)) of colloidal interactions, which predicts a secondary minimum at distances of nanometers between pairs of interacting particles. Moreover, the introduction of capillary, hydrophobic, and dipolar interactions between particles in an extended DLVO theory is not able to explain the spontaneous formation of mesostructures either. Recently, a great deal of effort has focused on understanding the mechanism behind the phenomenon of long-range attraction between colloidal particles confined in interfaces. In particular, this attraction has been employed to explain the spontaneous formation of mesostructures. Here, we show that the appearance of our mesostructures is due to the contamination of colloidal monolayers by silicone oil (poly(dimethylsiloxane)), which arises from the coating of the needles and syringes used to deposit and spread the particle solution at the air-water interface. The difference in the interfacial tension of water and silicone oil accounts for the formation of the experimentally observed mesostructures.  相似文献   

5.
In this paper, we examine, by dissipative particle dynamics (DPD) simulation, the interactions between nanoparticles and block copolymer bilayer membranes. The bilayer has a hydrophobic core and hydrophilic head groups on both sides of the core. Nanoparticles without or with a grafted homopolymer are considered. For the conditions investigated, the single nanoparticles and small aggregates are located at the interfaces of the membrane, namely the interfaces between the hydrophilic domains of the membrane and the solvent as well as at the interface between the hydrophobic and hydrophilic domains of the membrane. The large aggregates are located in the hydrophilic domains. By increasing the length of the homopolymer grafted on the nanoparticles, the size of the aggregates in the membrane decreases. At relatively short DPD step times, the particles aggregate in the solvent. As the time increases, the single particles and aggregates penetrate into the membrane.  相似文献   

6.
7.
We study some aspects of hydrophobic interaction between molecular rough and flexible model surfaces. The model we use in this work is based on a model we used previously (Eun, C.; Berkowitz, M. L. J. Phys. Chem. B 2009, 113, 13222-13228), when we studied the interaction between model patches of lipid membranes. Our original model consisted of two graphene plates with attached polar headgroups; the plates were immersed in a water bath. The interaction between such plates can be considered as an example of a hydrophilic interaction. In the present work, we modify our previous model by removing the charge from the zwitterionic headgroups. As a result of this procedure, the plate character changes: it becomes hydrophobic. By separating the total interaction (or potential of mean force, PMF) between plates into the direct and the water-mediated interactions, we observe that the latter changes from repulsive to attractive, clearly emphasizing the important role of water as a medium. We also investigate the effect of roughness and flexibility of the headgroups on the interaction between plates and observe that roughness enhances the character of the hydrophobic interaction. The presence of a dewetting transition in a confined space between charge-removed plates confirms that the interaction between plates is strongly hydrophobic. In addition, we notice that there is a shallow local minimum in the PMF in the case of the charge-removed plates. We find that this minimum is associated with the configurational changes that flexible headgroups undergo as the two plates are brought together.  相似文献   

8.
The interaction between a colloidal polystyrene particle mounted on an AFM cantilever and a hydrophilic and a hydrophobic surface in aqueous solution is investigated. Despite the apparent simplicity of these two types of systems a variety of different types of interactions are observed. The system containing the polystyrene particle and a hydrophilic surface shows DLVO-like interactions characteristic of forces between charged surfaces. However, when the surface is hydrophobized the interaction changes dramatically and shows evidence of a bridging air bubble being formed between the particle and the surface. For both sets of systems, plateaus of constant force in the force curves are obtained when the particle is retracted from the surface after being in contact. These events are interpreted as a number of individual polystyrene molecules that are bridging the polystyrene particle and the surface. The plateaus of constant force are expected for pulling a hydrophobic polymer in a bad (hydrophilic) solvent. The plateau heights are found to be of uniform spacing and independent of the type of surface, which suggests a model by which collapsed polymers are extended into the aqueous medium. This model is supported by a full stretching curve showing also the backbone elasticity and a stretching curve obtained in pentanol, where the plateau changes to a nonlinear force response, which is typical for a polymer in a good or neutral solvent. We suggest that these polymer bridges are important in particular for the interaction between polystyrene and the hydrophilic surface, where they to some extent counteract the long-range electrostatic repulsion.  相似文献   

9.
The pair interaction energy of charged colloidal particles in electrolyte solutions can exhibit a large barrier as well as a pronounced secondary minimum. We discuss the effect of a secondary energy minimum on aggregation kinetics by modeling irreversible dimer formation as a two-step process in which charged colloidal particles in electrolyte solutions first aggregate reversibly into the secondary minimum before they can cross the energy barrier. In the classical regime of slow aggregation, the secondary minimum is seen to have a pronounced effect if either the ionic strength of the solution is high (e.g., 0.1 M for particles of 150-nm radius) or particles are large (>/=350-nm radius for an ionic strength of 0.01 M). Under these conditions, our calculations predict a transient period of fast aggregation into the secondary minimum followed by slow primary aggregation. The aggregation in this second regime is found to take place at a lower rate than what would be expected in the absence of the secondary minimum or from an earlier linearized model for secondary aggregation. The crossover time between the two regimes strongly depends on the particle size but not on the particle concentration, which however determines the degree of aggregation reached within the fast regime. We also conclude that a previously observed severe discrepancy between measured and predicted aggregation rate constants for submicron particles is not due to the neglect of secondary aggregation in the theoretical treatment. Copyright 2000 Academic Press.  相似文献   

10.
Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)] was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the hydrophobic block length. Our results provide insights on ways in which experimentally controllable parameters of the Flash NanoPrecipitation process can be used to influence aggregate size and composition during self-assembly.  相似文献   

11.
具有疏水核/亲水壳的双亲胶体粒子的制备   总被引:2,自引:0,他引:2  
制备了具有疏水性聚苯乙烯核/亲水性聚丙烯酰胺壳的双亲粒子.疏水核通过超浓乳液聚合制备,亲水壳层通过过氧化羟基异丙苯和硫酸亚铁的界面引发制备.控制条件可得到网孔(半包覆)、褶皱(全包覆)两种形态的壳层.壳层孔的存在使得核层聚合物能够与外界接触.粒子的双亲性通过吸水吸油率进行表征.  相似文献   

12.
A study of the self-organization of colloidal particles during the evaporation of particle solutions on chemically patterned surfaces is presented. On a surface with hydrophilic and hydrophobic regions, colloidal particles form compact structures on the hydrophilic sites. When a colloidal solution containing a mixture of particles with a variation in size is used, the number density of each type of particle deposited on the hydrophilic islands after evaporation decreases with increasing particle size. This makes it possible to produce a concentration gradient of the particles on islands of different sizes. It is shown that this technique could allow for particle separation.  相似文献   

13.
We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.  相似文献   

14.
The zeta potentials of monodisperse colloidal silica were measured as a function of pH and as a function of the concentration of tetramethyl-, tetrapropyl-, and tetrapentylammonium bromide in aqueous solution. The variation of the potential with pH was explained by a simple, point ion adsorption model from which a dissociation constant and Gibbs free energy of dissociation were obtained. By contrast, the results obtained with tetraalkyl ammonium ions could not be explained using this simple model. However, incorporation of a hydrophobic adsorption term and finite ion size in a more sophisticated model gave good agreement with experimental measurements. The validity of the model is supported by the reasonable dissociation constants which were obtained on fitting the experimental data. Dissociation constants and the corresponding Gibbs free energies were calculated for both hydrophobic and site binding adsorption for each tetraalkyl ammonium ion. The stability of colloidal silica in solutions of these ions can now be satisfactorily explained in terms of the electrostatic repulsion between particles rather than by a hydrophobic/hydrophilic solvation effect previously proposed.  相似文献   

15.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

16.
The thermal diffusion coefficient of colloids consists of two additive contributions, one related to specific interactions between the surfaces of colloidal particles with solvent molecules, and a contribution due to interactions between the colloidal particles. In the present paper, the effect of intercolloidal particle interactions on their thermodiffusive behavior is discussed within a statistical thermodynamics framework. Transport coefficients are expressed in terms of the interaction potential between the colloidal spheres. A special feature of macromolecular systems is that this interaction potential is a potential of mean force, which is temperature dependent. It is shown that under certain conditions this implicit temperature dependence gives rise to negative Soret coefficients, that is, to diffusion of macromolecules to hot regions.  相似文献   

17.
Exfoliated graphene oxide (GO) sheets with hydrophilic functional groups on the surface were prepared by the oxidation of graphite. Because of the hydrophilic groups on the sheets and the hydrophobic carbon surface, GO sheets were located at the oil-water interface and could be used as a stabilizer in Pickering emulsions. After the Pickering emulsion polymerization of styrene, PS colloidal particles with GO sheets on the surface were prepared. The size of the GO sheets exerts an important influence on the preparation of PS colloidal particles. Small GO sheets located at the liquid-liquid interface and GO-stabilized PS colloidal particles were prepared; however, for large GO sheets, smaller PS colloidal particles prepared on the GO surface were observed. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the colloidal particles. TEM, SEM, and XPS results all suggest the successful preparation of GO-stabilized PS colloidal particles.  相似文献   

18.
Glycoproteins, such as lubricin, and hyaluronic acid (HA) play a prominent role in the boundary lubrication mechanism in diarthrodial joints. Although many studies have tried to elucidate the lubrication mechanisms of articular cartilage, the molecular details of how lubricin and HA interact with cartilage surfaces and mediate their interaction still remain poorly understood. Here we used model substrates, functionalized with self-assembled monolayers terminating in hydroxyl or methyl groups, (1) to determine the effect of surface chemistry on lubricin and HA adsorption using surface plasmon resonance (SPR) and (2) to study normal force interactions between these surfaces as a function of lubricin and HA concentration using colloidal probe microscopy. We found that lubricin is amphiphilic and adsorbed strongly onto both methyl- and hydroxyl-terminated surfaces. On hydrophobic surfaces, lubricin likely adopts a compact, looplike conformation in which its hydrophobic domains at the N and C termini serve as surface anchors. On hydrophilic surfaces, lubricin likely adsorbs anywhere along its hydrophilic central domain and adopts, with increasing solution concentration, an extended tail-like conformation. Overall, lubricin develops strong repulsive interactions when compressing two surfaces into contact. Furthermore, upon surface separation, adhesion occurs between the surfaces as a result of molecular bridging and chain disentanglement. This behavior is in contrast to that of HA, which does not adsorb appreciably on either of the model surfaces and does not develop significant repulsive interactions. Adhesive forces, particularly between the hydrophobic surfaces, are large and not appreciably affected by HA. For a mixture of lubricin and HA, we observed slightly larger adsorptions and repulsions than those found for lubricin alone. Our experiments suggest that this interaction depends on unspecific physical rather than chemical interactions between lubricin and HA. We speculate that in mediating interactions at the cartilage surface, an important role of lubricin, possibly in conjunction with HA, is one of providing a protective coating on cartilage surfaces that maintains the contacting surfaces in a sterically repulsive state.  相似文献   

19.
The influence of various experimental parameters on the vertical deposition and structure formation of colloidal crystals on chemically patterned surfaces, with hydrophilic and hydrophobic areas, was investigated. The pattern dimensions range from about 4 to 400 microm, which is much larger than the individual particle size (255 nm), to control the microscopic crystal shape rather than influencing the crystal lattice geometry (as achieved in colloidal epitaxy). The deposition resolution and selectivity were tested by varying the particle concentration in the suspension, the substrate withdrawing speed, pattern size and orientation, and wetting contrast between the hydrophilic and hydrophobic regions. The evolution of colloidal crystal thickness with respect to the pattern dimensions and deposition parameters was further studied. Our results show that the pattern size has a rather strong influence on the deposited number of colloid layers and on the crystal quality. Better results are obtained when the lines of a stripe pattern are oriented parallel to the withdrawing direction rather than perpendicular. The deposition resolution (defined as the minimum feature size on which particles can be deposited) depends on the wetting contrast and increases with lower average hydrophobicity of the substrate.  相似文献   

20.
以造纸制浆废液中的松木碱木质素(AL)为原料,通过季铵化改性,制备了季铵化碱木质素(QAL).QAL与十二烷基苯磺酸钠(SDBS)通过静电作用形成QAL/SDBS复配物,将QAL/SDBS复配物在乙醇/水混合溶剂中进行自组装得到具有pH响应性的胶体球.采用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、元素分析和静态接触角研究了胶体球的形成过程和结构.研究结果表明,QAL/SDBS复配物通过疏水聚集作用形成具有较疏水的“核”和较亲水的“壳”结构的规整胶体球.在pH=3.0时,由于QAL与SDBS间的静电作用和疏水作用使胶体球能够稳定存在.当pH>7.5时,季铵化碱木质素上的羧基电离,由于静电斥力的作用使胶体球开始解聚,当pH=10.5时,季铵化碱木质素上的酚羟基的电离使得QAL与SDBS间的静电斥力增大,胶体球完全解聚.这种在酸性条件下稳定,中性条件下解聚的胶体球在药物缓释方面具有潜在的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号