首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterize the class of distribution functions Φ(x), which are limits in the following sense: there exist a sequence of independent and equally distributed random variables {ξ n }, numerical sequences {a k }, {b k } and natural numbers {n k } such that $$\mathop {lim}\limits_{k \to \infty } Prob\left\{ {\frac{1}{{a_k }}\mathop {\Sigma }\limits_{k = 1}^{n_k } \xi _k - b_k< x} \right\} = \Phi (x)$$ and $$\mathop {\lim \inf }\limits_{k \to \infty } (n_k /n_{k + 1} ) > 0$$ .  相似文献   

2.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

3.
По определению после довательность {μ n пр инадлежит классуG s , если звезда М иттагЛеффлера произвольного степе нного ряда (1) $$\mathop \sum \limits_0^\infty a_n z^n , \mathop {lim sup}\limits_{n \to \infty } \left| {a_n } \right|^{1/n}< \infty $$ , совпадает со звёздам и Миттаг-Леффлера сте пенных рядов $$\mathop \sum \limits_0^\infty \mu _n a_n z^n ,\mathop \sum \limits_0^\infty \mu _n^{ - 1} a_n z^n $$ . В работе установлены следующие утвержден ия Теорема 1.Для произво льной последователь ности ? n с условиями $$0< \varphi _n< 1,\mathop {lim}\limits_{n \to \infty } \varphi _n = 0,\mathop {lim}\limits_{n \to \infty } \varphi _n^{1/n} = 1$$ существует неубываю щая функция χ(t) такая, ч то моменты \(\mu _n = \int\limits_0^1 {t^n d\chi (t)} \) удовлетворяют условию 0<μnn звезда М иттаг-Леффлера любог о ряда (1) совпадает со звездой МиттагЛеффлера степенных рядов . Теорема 2. Для произвол ьной неотрицательно й последовательности {аn} с условием {a n } и для любой последов ательности {?n} для к оторой 0n<1, \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n = 0\) сущест вуютπ={π n }∈G s и последовательнос ть {пi} такие, что anμn≦1 (n≧n0), \(a_{n_i } \mu _{\mu _i } \geqq exp( - \varepsilon _{n_i } )\) (i=1, 2, ...) и при эmom звезда Миттаг-Леффлера ряда (1) совпа дает со звездой Миттаг- Леффлера степенных р ядов .  相似文献   

4.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

5.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

6.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

7.
Пусть?(x) — ограниченн ая функция на отрезке [0,1] и ее функция распределен ияΦ(t) удовлетворяет услов ию $$\Phi \left( t \right) + \Phi \left( { - t} \right) = 1.$$ Еслиf(x) — конечная поч ти всюду функция, то дл яF n (t) — функции распределе ния произведенияf(x)?(nx) — вы полнены соотношения и В частности, еслиf(x) — и нтегрируемая функци я, то из (1) следует, что $$\mathop {\lim }\limits_{n \to \infty } \mathop \smallint \limits_0^1 f\left( x \right)\varphi \left( {nx} \right)dx = 0 $$   相似文献   

8.
ИжУЧАЕтсь кРИтИЧЕск Аь скОРОсть УБыВАНИь Дль РАжлИЧНых МЕтОДОВ сУ ММИРОВАНИь. пРОтОтИпОМ тАкИх РЕж УльтАтОВ ьВльЕтсь сл ЕДУУЩЕЕ УтВЕРжДЕНИЕ, ОтНОсьЩ ЕЕсь к МЕтОДУ сУММИРОВАНИ ь АБЕль: ЕслИ $$a_n = O(n^p ) \Pi pI x \to \infty $$ Дль НЕкОтОРОгОp И $$\sum {a_n e^{ - nx} = O(e^{ - \eta (x)/x} ) \Pi pI x \to + 0,} $$ пРИx→+0, гДЕ ФУНкцИьη УДОВлЕт ВОРьЕт УслОВИУ $$\mathop {\lim \sup }\limits_{x \to + 0} \eta (x) = \infty ,$$ тО кОЁФФИцИЕНтыa n РАВ Ны НУлУ Дль ВсЕхn. Мы пОкАжыВАЕМ, ЧтО пОД ОБНыИ РЕжУльтАт ИМЕЕ т МЕстО Дль шИРОкОгО клАссА МЕтОДОВ сУММИРОВАНИ ь.  相似文献   

9.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

10.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

11.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

12.
Пусть {Xj} - строго стац ионарная последоват ельностьс ?перемешиванием, EXj-Q,E¦-X j¦r< для некоторогоr>2. Положим \(S_n = \mathop \sum \limits_{j = 1}^n X_j \) . Ибрагимов (1962) доказал, что если приn →∞, то 1 $$\mathop {\lim }\limits_{n \to \infty } P\{ S_n /\sigma _n< x\} = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^x e^{{{ - u^2 } \mathord{\left/ {\vphantom {{ - u^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} du.$$ В работе установлено, что при указанных выш е условиях в этой центральной пр едельной теореме имеет место т акже и сходимостьr-ых абсолютных моментов, т.е. если σ n 2 →∞ приn→ ∞, то $$\mathop {\lim }\limits_{n \to \infty } E|S_n /\sigma _n |^r = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^{ + \infty } |u|^r e^{ - u^2 /2} du.$$ Этот результат обобщ ает один более ранний результат автора (1980 г.).  相似文献   

13.
Рассматриваются слу чайная величина \(\mathfrak{X} = (X_n (\omega ))\) , удовлетворяющая усл овиюE(X n 4 )≦M, и соответствующ ий случайный степенн ой ряд \(f_x (z;\omega ) = \mathop \sum \limits_{n = 0}^\infty a_n X_n (\omega )z^n\) . Устанавливаются тео ремы непродолжимост и почти наверное:
  1. дляf x при условиях с лабой мультипликати вности на \(\mathfrak{X}\) ,
  2. для \(f_{\tilde x}\) , где \(\mathop \mathfrak{X}\limits^ \sim = (\mathop X\limits^ \sim _n )\) есть подп оследовательность в \(\mathfrak{X}\) ,
  3. для по крайней мере од ного из рядовf x′ илиf x″ , где \(\mathfrak{X}'\) и \(\mathfrak{X}''\) — некоторые п ерестановки \(\mathfrak{X}\) , выбираемые универс ально, т. е. независимо от коэффициентовa n .
  相似文献   

14.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

15.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

16.
Suppose Φp, E (p>0 an integer, E ?[0, 2π]) is a family of positive nondecreasing functions? x(t) (t>0, x E) such that? x(nt)≤nP ? x(t) (n=0,1,...), tn is a trigonometric polynomial of order at most n, and Δ h l (f, x) (l>0 an integer) is the finite difference of orderl with step h of the functionf.THEOREM. Supposef (x) is a function which is measurable, finite almost everywhere on [0, 2π], and integrable in some neighborhood of each point xε E,? X εΦp,E and $$\overline {\mathop {\lim }\limits_{\delta \to \infty } } |(2\delta )^{ - 1} \smallint _{ - \delta }^\delta \Delta _u^l (f,x)du|\varphi _x^{ - 1} (\delta ) \leqslant C(x)< \infty (x \in E).$$ . Then there exists a sequence {t n } n=1 which converges tof (x) almost everywhere, such that for x ε E $$\overline {\mathop {\lim }\limits_{n \to \infty } } |f(x) - l_n (x)|\varphi _x^{ - 1} (l/n) \leqslant AC(x),$$ where A depends on p andl.  相似文献   

17.
A Banach space is called C-convex if the space c0 cannot be represented finitely in it. Necessary and sufficient conditions for the C-convexity of a space with an unconditional basis and of the product of a space Y with respect to the unconditional basis of a space X are obtained. These conditions are rendered concrete for two classes of spaces: The Orlich space of sequences is C-convex if and only if its normalizing function satisfies the δ2-condition; the Lorentz space of sequences is C-convex if and only if its normalizing sequence satisfies the condition \(\mathop {\underline {\lim } }\limits_{n \to \infty } {{\sum\nolimits_{i = 1}^{2n} {c_i } } \mathord{\left/ {\vphantom {{\sum\nolimits_{i = 1}^{2n} {c_i } } {\sum\nolimits_{i = 1}^n {c_i > 1} }}} \right. \kern-0em} {\sum\nolimits_{i = 1}^n {c_i > 1} }}\) . We call a Banach space X a C-convex space if the following condition is fulfilled: $$\mathop {\sup }\limits_n \inf d\left( {X_n , l_\infty ^n } \right) = \infty $$ ,  相似文献   

18.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

19.
пУстьλ={λ i} i=1 —пОслЕ ДОВАтЕльНОсть ВЕЩЕс тВЕННых ЧИсЕл сλ i↑∞ Иλ m={λт+ i} i=0 . РАссМАтРМВАУтсь 2π-пЕ РИОДИЧЕскИЕ ФУНкцИИ, Дль кОтОРых $$V_\Lambda (f) = \mathop {\sup }\limits_x \mathop {\mathop {\sup }\limits_{(a_i ,b_i ) \cap (a_j ,b_j ) = \emptyset } }\limits_{(a_i ,b_i ) \subset (x,x + 2\pi ]} \mathop \sum \limits_{\iota = 1}^\infty \frac{{\left| {f(b_i ) - f(a_i )} \right|}}{{\lambda _i }}< \infty ,$$ И Дль кОтОРых $$\mathop {\lim }\limits_{m \to \infty } V_{\Lambda ^m } (f) = 0.$$ ДОкАжАНО, ЧтО УжЕ ВО Вт ОРОМ клАссЕ Есть ВЕжД Е АппРОксИМАтИВНО НЕД ИФФЕРЕНцИРУЕМыЕ ФУН к-цИИ. пОлУЧЕНы ОцЕНкИ кОЁФФИцИЕНтО В ФУРьЕ ЁтИх клАссОВ И НЕкОтОРыЕ РЕжУльтАты ОБ Их ОкОНЧАтЕльНОстИ. кАк слЕДстВИЕ ДАНО ДОстА тОЧНОЕ УслОВИЕ Дль Их НЕсОВп АДЕНИь.  相似文献   

20.
In this paper, we shall prove the existence of the singular directions related to Hayman's problems[1]. The results are as follows.
  1. Suppose that f(z) is a transcendental integral function in the finite plane, then there exists a direction H: argz= θ0 (0≤θ0>2π) such that for every positive ε, every integer p(≠0, ?1) and every finite complex number b(≠0), we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' \cdot \{ f\} ^p = b)} \right\} = + \infty $$
  2. Suppose that f(z) is a transcendental integral function in the finite plane, then there exists a direction H:z= θ0 (0≤θ0>2π) such that for every positive ε, every integrer p(≥3) and any finite complex numbers a(≠0) and b, we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' - a\{ f\} ^p = b)} \right\} = + \infty $$
  3. Suppose that f(z) is a meromorphic function in the finite plane and satisfies the following condition $$\mathop {\lim }\limits_{r \to \infty } \frac{{T(r,f)}}{{(\log r)^3 }} = + \infty $$ then there exists a direction H:z= θ0 (0≤θ0>2π) such that for every positive ε, every integer p(≥5) and every two finite complex numbers a(≠0) and b, we have $$\mathop {\lim }\limits_{r \to \infty } \left\{ {n(r,\theta _0 ,\varepsilon ,f' - a\{ f\} ^p = b)} \right\} = + \infty $$
The singular directions in Theorems I–III are called Hayman directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号