首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

2.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

3.
This paper is a continuation of the author’s plenary lecture given at ICCA 9 which was held in Weimar at the Bauhaus University, 15–20 July, 2011. We want to study on both the mathematical and the epistemological levels the thought of the brilliant geometer W. K. Clifford by presenting a few comments on the structure of the Clifford algebra ${C\ell_2}$ associated with the standard Euclidean plane ${\mathbb{R}^2}$ . Miquel’s theorem will be given in the algebraic context of the even Clifford algebra ${C\ell^+_2}$ isomorphic to the real algebra ${\mathbb{C}}$ . The proof of this theorem will be based on the cross ratio (the anharmonic ratio) of four complex numbers. It will lead to a group of homographies of the standard projective line ${\mathbb{C}P^1 = P(\mathbb{C}^2)}$ which appeared so attractive to W. K. Clifford in his overview of a general theory of anharmonics. In conclusion it will be shown how the classical Clifford-Hopf fibration S 1S 3S 2 leads to the space of spinors ${\mathbb{C}^2}$ of the Euclidean space ${\mathbb{R}^3}$ and to the isomorphism ${{\rm {PU}(1) = \rm {SU}(2)/\{I,-I\} \simeq SO(3)}}$ .  相似文献   

4.
We consider the central extended $\widehat{gl}(\infty )$ Lie algebra and a set of its subalgebras parametrized by |q|=1, which coincides with the embedding of the quantum tori Lie algebras (QTLA) in $\widehat{gl}(\infty )$ . Forq N=1 there exists an ideal, and a factor over this ideal is isomorphic to an $\widehat{sl}_{N(z)} $ affine algebra. For a generic valueq the corresponding subalgebras are dense in $\widehat{gl}(\infty )$ . Thus, they interpolate between $\widehat{gl}(\infty )$ and $\widehat{sl}_{N(z)} $ . All these subalgebras are fixed points of automorphism of $\widehat{gl}(\infty )$ . Using the automorphisms, we construct geometrical actions for the subalgebras, starting from the Kirillov-Kostant form and the corresponding geometrical action for $\widehat{gl}(\infty )$ .  相似文献   

5.
Consider a single server queue with i.i.d. arrival and service processes, $\{ A,A_n ,n \geqslant 0\} $ and $\{ C,\;C_n ,n\;\; \geqslant \;\;0\} $ , respectively, and a finite buffer B. The queue content process $\{ Q_n^B ,n \geqslant 0\} $ is recursively defined as $Q_{n + 1}^B = \min ((Q_n^B + A_{n + 1} - C_{n + 1} )^ + ,B),\;\;q^ + = \max (0,q)$ . When $\mathbb{E}(A - C) < 0$ , and A has a subexponential distribution, we show that the stationary expected loss rate for this queue $E(Q_n^B + A_{n + 1} - C_{n + 1} - B)^ + $ has the following explicit asymptotic characterization: $${\mathbb{E}}\left( {Q_n^B + A_{n + 1} - C_{n + 1} - B} \right)^ + ~{\mathbb{E}}\left( {A - B} \right)^ + {as} B \to \infty ,$$ independently of the server process C n . For a fluid queue with capacity c, M/G/∞ arrival process A t , characterized by intermediately regularly varying on periods σon, which arrive with Poisson rate Λ, the average loss rate $\lambda _{{loss}}^B $ satisfies λ loss B ~ Λ E(τonη — B)+ as B → ∞, where $\eta = r + \rho - c,\;\rho \; = \mathbb{E}A_t < \;\;c;r\;\;(c \leqslant r)$ is the rate at which the fluid is arriving during an on period. Accuracy of the above asymptotic relations is verified with extensive numerical and simulation experiments. These explicit formulas have potential application in designing communication networks that will carry traffic with long-tailed characteristics, e.g., Internet data services.  相似文献   

6.
In this paper we investigate a multi-parameter deformation $\mathfrak{B}_{r,s}^n(a,\lambda,\delta)$ of the walled Brauer algebra which was previously introduced by Leduc (1994). We construct an integral basis of $\mathfrak{B}_{r,s}^n(a,\lambda,\delta)$ consisting of oriented tangles which is in bijection with walled Brauer diagrams. Moreover, we study a natural action of $\mathfrak{B}_{r,s}^n(q)= \mathfrak{B}_{r,s}^n(q^{-1}-q,q^n,[n]_q)$ on mixed tensor space and prove that the kernel is free over the ground ring R of rank independent of R. As an application, we prove one side of Schur–Weyl duality for mixed tensor space: the image of $\mathfrak{B}_{r,s}^n(q)$ in the R-endomorphism ring of mixed tensor space is, for all choices of R and the parameter q, the endomorphism algebra of the action of the (specialized via the Lusztig integral form) quantized enveloping algebra U of the general linear Lie algebra $\mathfrak{gl}_n$ on mixed tensor space. Thus, the U-invariants in the ring of R-linear endomorphisms of mixed tensor space are generated by the action of $\mathfrak{B}_{r,s}^n(q)$ .  相似文献   

7.
Let G = exp ${\mathfrak{g}}$ be a connected, simply connected, nilpotent Lie group and let ω be a continuous symmetric weight on G with polynomial growth. In the weighted group algebra ${L^{1}_{\omega}(G)}$ we determine the minimal ideal of given hull ${\{\pi_{l'} \in \hat{G} | l' \in l + \mathfrak{n}^{\perp}\}}$ , where ${\mathfrak{n}}$ is an ideal contained in ${\mathfrak{g}(l)}$ , and we characterize all the L (G/N)-invariant ideals (where ${N = {\rm exp}\, \mathfrak{n}}$ ) of the same hull. They are parameterized by a set of G-invariant, translation invariant spaces of complex polynomials on N dominated by ω and are realized as kernels of specially built induced representations. The result is particularly simple if the co-adjoint orbit of l is flat.  相似文献   

8.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

9.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

10.
When k≥k0=10 Mr2n log (rn) we have for the trigonometric integral $$J_n (k,P) = \int_E {|S(A)|^{2k} dA,} $$ where $$\begin{gathered} S(A) = \sum _{x_1 = 1}^P \cdots \sum _{x_r = 1}^P \exp (2\pi if_A (x_1 , \ldots ,x_r )), \hfill \\ f_A (x_1 , \ldots ,x_r ) = \sum _{t_1 = 0}^n \cdots \sum _{t_r = 0}^n \alpha _{t_1 \cdots l_r } x_1^{t_1 } \cdots x_{r^r }^t \hfill \\ \end{gathered} $$ and E is the M-dimensional unit cube, the asymptotic formula $$J_n (k,P) = \sigma \theta P^{2kr - rnM/2} + O(P^{2kr - rnM/2 - 1/(2M)} ) + O(P^{2kr - rnM/2 - 1/(500r^2 \log (rn))} ),$$ where σ is a singular series and θ is a singular integral.  相似文献   

11.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

12.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

13.
14.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

15.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

16.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

17.
For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K ?[+]K + ofK, we prove the index formula $$\kappa ^ - \left( \mathcal{S} \right) + \dim \left( {\mathcal{S}^ \bot \cap \mathcal{K}^ + } \right) = \kappa ^ + \left( {\mathcal{S}^ \bot } \right) + \dim \left( {\mathcal{S} \cap \mathcal{K}^ - } \right)$$ where κ±(S) stands for the positive/negative signature ofS. The difference dim(SK ?)?dim(S K +), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space.  相似文献   

18.
If m ∈ ?, ? m is the additive group of the modulo m residue classes, $\mathcal{A} \subset \mathbb{Z}_m$ and n ∈ ?, ? m , then let $R\left( {\mathcal{A},n} \right)$ denote the number of solutions of a+a′ = n with $a,a' \in \mathcal{A}$ . The variation $V(\mathcal{A}) = \mathop {\max }\limits_{n \in \mathbb{Z}_m } |R(\mathcal{A},n + 1) - R(\mathcal{A},n)|$ is estimated in terms of the number of a’s with $a - 1 \notin \mathcal{A}$ , $a \in \mathcal{A}$ .  相似文献   

19.
We consider the generalized Gagliardo-Nirenberg inequality in $\Bbb{R}^{n}$ including homogeneous Besov space $\dot{B}^{s}_{r,\rho}(\Bbb{R}^{n})$ with the critical order s=n/r, which describes the continuous embedding such as $L^{p}(\Bbb{R}^{n})\cap\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})\subset L^{q}(\Bbb{R}^{n})$ for all q with p q<∞, where 1 p r<∞ and 1<ρ ∞. Indeed, the following inequality holds: $$\|u\|_{L^{q}(\Bbb{R}^{n})}\leqq C\,q^{1-1/\rho}\|u\|_{L^{p}(\Bbb{R}^{n})}^{p/q}\|u\|_{\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})}^{1-p/q},$$ where C is a constant depending only on r. In this inequality, we have the exact order 1?1/ρ of divergence to the power q tending to the infinity. Furthermore, as a corollary of this inequality, we obtain the Gagliardo-Nirenberg inequality with the homogeneous Triebel-Lizorkin space $\dot{F}^{n/r}_{r,\rho}(\Bbb{R}^{n})$ , which implies the usual Sobolev imbedding with the critical Sobolev space $\dot{H}^{n/r}_{r}(\Bbb{R}^{n})$ . Moreover, as another corollary, we shall prove the Trudinger-Moser type inequality in $\dot{B}^{n/r}_{r,\rho}(\Bbb{R}^{n})$ .  相似文献   

20.
Let A be a left and right coherent ring and C A (resp., $C_{A^{\mathrm{op}}}$ ) a minimal cogenerator for right (resp., left) A-modules. We show that $\mathrm{flat \ dim \ }C_{A} = \mathrm{flat \ dim \ }C_{A^{\mathrm{op}}}$ whenever flat dim C A ?<?∞ and $\mathrm{flat \ dim \ }C_{A^{\mathrm{op}}} < \infty$ , and that $\mathrm{flat \ dim \ }C_{A} = \mathrm{flat \ dim \ }C_{A^{\mathrm{op}}} < \infty$ if and only if the finitely presented right A-modules have bounded Gorenstein dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号