首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic cholesteryl 2,6-di-O-methyl-β-cyclodextrins (chol-DIMEB) can self-aggregate into spherical micelles of noteworthy potential for drug delivery. All-atom molecular dynamics simulations of chol-DIMEB micelles consisting of 3-24 monomers have been performed in aqueous solution. chol-DIMEB exhibits a pronounced tendency to self-assemble into core-shell structures. van der Waals interactions within the cholesteryl nucleus constitute the main driving force responsible for the formation of the micelle. The calculated radii of the hydrophobic core and of the hydrophilic shell for the micellar structure formed by 24 monomers agree well with the experiment. The cyclodextrin moieties are found to be exposed toward the aqueous medium and possess the appropriate flexibility to capture drugs in an effective fashion. Analysis of the solvent accessible surface area and hydration number indicates that the micelles are highly hydrosoluble species and can, therefore, enhance significantly the aqueous solubility of lipophilic drugs. In addition, the spatial structure of the micelles is suggestive of multiple potential drug binding sites. The present contribution unveils how micelles endowed with specific characteristics can form, while opening exciting perspectives for the design of novel micellar nanoparticles envisioned to be drug carriers of high potential.  相似文献   

2.
Three model drugs with different function groups were chosen to dialyze with dextran-graft-poly(N-isopropylacrylamide).Only ibuprofen could induce the formation of drug loaded micelles,which was confirmed with dynamic light scattering and transmission electron microscope.Hydrogen-bonding between the amide groups of poly(N-isopropylacrylamide) and the carboxyl groups of ibuprofen was driving force for the drug-loaded micelle.It was also found that the diameter of the ibuprofen-loaded micelles changed reversibly against temperature.  相似文献   

3.
4.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was applied to the enantioseparation of three binaphthyl derivatives using neutral CDs (i.e., beta- and gamma-CD) in combination with various chiral amino acid-based polymeric surfactants (PSs). Both the D- and L-configurations of poly(sodium N-undecanoyl alaninate), poly(sodium N-undecanoyl leucinate), and poly(sodium N-undecanoyl valinate) (poly(L-SUV)) were synthesized. The retention behavior of the three binaphthyl derivatives under optimum electrophoretic conditions using a single chiral additive (PS or CD) is discussed. In addition, the effect of CD cavity size and stereochemical configuration of polymeric surfactants on selectivity (alpha) and resolution (Rs) was investigated. The enantioseparation of (+/-)1,1'-binaphthyl-2,2'-diamine gave a reversal of enantiomeric order when using beta-CD in combination with any of the three D-configuration PS. However, better enantioseparation is obtained when using the corresponding L-configuration PS with beta-CD. A reversal of migration order (RMO) for the enantiomers of (+/-)1,1'-bi-2-naphthol was observed upon the addition of 10 mM gamma-CD to poly(L-SUV). However, no RMO of (+/-)1,1'-bi-2-naphthol was seen when either beta-CD or gamma-CD was combined with D-PS. The enantiomers of (+/-)1,1'-binaphthyl-2,2'-diyl hydrogen phosphate showed little enantioselective behavior toward the PS alone. However, combined D- or L-PS and beta-CD or gamma-CD systems gave increased Rs and alpha values. The chiral recognition of binaphthyl derivatives observed resulting from the various combinations of two chiral selectors is discussed.  相似文献   

5.
Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.  相似文献   

6.
7.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

8.
This article briefly describes some new approaches to stimuli-sensitive polymeric micelles and hollow spheres, which were developed in the authors’ laboratory in recent years. (1) Self-assembly of component polymers to non-covalently connected micelles (NCCM) driven by specific interactions. For example, in water, PCL and PAA formed core-shell nanospheres due to interpolymer hydrogen bonding. After crosslinking the PAA shell and removing the PCL core, “nanocages” made of PAA network were obtained. This hollow structure shows perfect reversible size-pH dependence. (2) Simultaneous in-situ polymerization of monomers and self-assembly of the polymers. In this approach, PNIPAM network was formed by radical polymerization covering PCL particles. Hollow spheres of PNIPAM network were then obtained by biodegradation of the PCL core. Both the core-shell spheres and hollow spheres show reversible size dependence on temperature change because of the phase transition of PNIPAM around 32°C. (3) Complexation-induced micellization and transition between the micelles and hollow spheres. Graft copolymers of hydroxylethyl cellulose (HEC) and PAA were prepared by free radical polymerization. The copolymers showed pH dependent micellization, i.e., micelles formed when pH of the graft copolymer solution decreased to around 3. The micellar structure could be locked by crosslinking the PAA grafts. The resultant cross-linked micelles undergo pH-dependent transition between the micelles and hollow spheres, which accompanies a remarkable particle size change. Both the micellization and the structure transition were found to be reversible and associated with H-bonding complexation between the main chain and grafts. __________ Translated from Acta Polymerica Sinica, 2005, 650(5) (in Chinese)  相似文献   

9.
Organomicelles modified by surface dibenzylcyclooctyne moieties can conveniently be functionalized by strain-promoted alkyne-azide cycloadditions. The ligation approach is highly efficient, does not require toxic reagents and is compatible with a wide variety of functional modules. Interactions of proteins with surface ligands of the micelles have been studied by AFM, which revealed that it leads to disassembly of the particles thereby providing a mechanism for triggered drug release.  相似文献   

10.
通过阴离子聚合和活性自由基聚合相结合的方法,合成了聚环氧乙烷-聚丙烯腈两亲性嵌段共聚物(PEO-b-PAN).PEO-b-PAN嵌段共聚物在水溶液中自组装形成胶束正硅酸乙酯以胶束作模板进行溶胶-凝胶过程,形成SiO2/PEO-b-PAN复合材料.随后经300℃预氧化,1000℃高温炭化,得到SiO2-C纳米复合材料.用1HNMR、IR、GPC、TGA、TEM、SEM等技术对嵌段共聚物及SiO2-C纳米复合材料进行了表征,结果表明SiO2-C复合材料的结构为SiO2为壳C为核的纳米粒子,粒子的直径为(55±5)nm.  相似文献   

11.
The heterodimerization behavior of dye-modified beta-cyclodextrins (1-6) with native cyclodextrins (CDs) was investigated by means of absorption and induced circular dichroism spectroscopy in an aqueous solution. Three types of azo dye-modified beta-CDs (1-3) show different association behaviors, depending on the positional difference and the electronic character of substituent connected to the CD unit in the dye moiety. p-Methyl red-modified beta-CD (1), which has a 4-(dimethylamino)azobenzene moiety connected to the CD unit at the 4' position by an amido linkage, forms an intramolecular self-complex, inserting the dye moiety in its beta-CD cavity. It also associates with the native alpha-CD by inserting the moiety of 1 into the alpha-CD cavity. The association constants for such heterodimerization are 198 M(-1) at pH 1.00 and 305 M(-1) at pH 6.59, which are larger than the association constant of 1 for beta-CD (43 M(-1) at pH 1.00). Methyl red-modified 2, which has the same dye moiety as that for 1 although its substituent position is different from that of 1, does not associate even with alpha-CD due to the stable self-intramolecular complex, in which the dye moiety is deeply included in its own cavity of beta-CD. Alizarin yellow-modified CD (3), which has an azo dye moiety different from that of 1 and 2, caused a slight spectral variation upon addition of alpha-CD, suggesting that the interaction between 3 and alpha-CD is weak. On the other hand, phenolphthalein-modified beta-CD (4), which forms an intermolecular association complex in its higher concentrations, binds with beta-CD with an association constant of 787 M(-1) at pH 10.80, where 4 exists as the dianion monomer in the absence of beta-CD. p-Nitorophenol-modified beta-CDs (5 and 6), each having p-nitorophenol moieties with a different connecting part with an amido and amidophenyl group, respectively, associated with alpha-CD with association constants of 66 and 16 M(-1) for 5 and 6, respectively. The phenyl unit in the connecting part of 6 may prevent the smooth binding with alpha-CD. All these results suggest that the dye-modified CDs, in which the dye part is not tightly included in its CD cavity, associate with the native CD to form heterodimer composed of two different CD units by inserting the dye moiety into the native CD unit. The resulting heterodimers have a cavity that can bind another appending moiety of host molecules. On this basis, more ordered molecular arrays or the supramolecular hereropolymers can be constructed.  相似文献   

12.
Monomethyl poly(ethylene glycol)-poly(ε-caprolactone)-poly(trimethylene carbonate) (MPEG-P(CL-ran-TMC)) copolymer was synthesized, which could encapsulate GA by a single-step solid dispersion and form nano-sized micelles. The MPEG-P(CL-ran-TMC) based nano-formulation of GA could improve the anti-tumor effect in vivo, which may serve as a candidate for pancreatic cancer therapy.  相似文献   

13.
综述了聚合物胶束的性质、制备、以及影响胶束性能的因素,对聚合物胶束在抗肿瘤药物药系统中的研究实例作了简要介绍。  相似文献   

14.
Two types of turbidimetric detection of adenosine 5'-triphosphate (ATP) by the naked eye were achieved through a combination of non-cross-linking aggregation of DNA-linked polymeric micelles and molecular recognition of ATP by a DNA aptamer.  相似文献   

15.
Hollow microcapsules containing polymeric micelles in their walls were fabricated by alternating assembly of poly(allylamine hydrochloride) (PAH) and poly(styrene- b-acrylic acid) (PS- b-PAA) micelles on MnCO(3) microparticles followed by sacrificing the templates in acid solution. The successful formation of PAH/micelle multilayers on both planar and curved substrates was confirmed by UV-vis spectroscopy, ellipsometry, and xi-potential measurements. The PS- b-PAA micelles retained their structure during the whole assembly process. The as-prepared microcapsules showed extraordinary stability against concentrated HCl (37%) and 0.1 M NaOH solutions. No variation in capsule size or shape was observed in acidic solution, while slight swelling and distortion of the capsules took place in alkaline solution. However, these capsules completely recovered their original size and morphology after being incubated in acidic solution again. The microcapsules, in which large voids exist between the micelle grains on the walls, were totally permeable to fluorescein-tagged dextran with an M(w) of 2000 kDa. Assembly of additional PAH/poly(sodium 4-styrenesulfonate) multilayers could substantially reduce the permeation of the same molecules. These multicompartmental capsules combine polymeric micelles with multilayer polyelectrolyte microcapsules and could possibly be imparted with multifunctions, thus possibly finding diverse applications in the fields of drug delivery, biosensing, and nanobiotechnology.  相似文献   

16.
Polymerizable and hydrolytically cleavable dexamethasone (DEX, red dot in picture) derivatives were covalently entrapped in core-cross-linked polymeric micelles that were prepared from a thermosensitive block copolymer (yellow and gray building block). By varying the oxidation degree of the thioether in the drug linker, the release rate of DEX could be controlled. The DEX-loaded micelles were used for efficient treatment of inflammatory arthritis in two animal models.  相似文献   

17.
This communication reports thermoresponsive diblock copolymer micelles composed of a hydrophilic poly(ethylene glycol) (PEG) shell with temperature-responsive functionality and an acid-labile, hydrophobic poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO) core. Because of the partial in situ hydrolysis of these micelles, an interesting two-step phase transition occurs, exhibiting two separate cloud points. This can be attributed to the dual characters displayed by poly(2-hydroxyethyl acrylamide) (PHEAM), the hydrolysis product of PADMO in an acid medium. The formation of hydrogen bonding between PEG and PHEAM enhances the hydrophobicity of PEG chains and promotes the phase transition that takes place at a lower temperature than before. On the other hand, generation of water-soluble PHEAM increases the hydrophilicity of the whole micelles and requires higher temperature that induces dehydration of these micelles. This finding could help us better understand the relationship between micellar microstructure and thermosensitive behaviors.  相似文献   

18.
Polymeric micelles showing charge selective and pH‐reversible encapsulation are reported. It is found that for a guest mixture of organic cationic–anionic dyes, a unimolecular micelle (PEI@PS) with a polystyrene (PS) as shell and a hyperbranched polyethylenimine (PEI) as core can exclusively entrap the anionic one; and a physical micelle consisting of brush‐like macromolecule (mPS‐PAA) with multi PS‐b‐polyacrylic acid (PAA) as grafts can exclusively entrap the cationic one. A covalent micelle (PEI‐COOH@PS) bearing a zwitterionic core, that is, PEI covalently derived with dense carboxylic acids, can undergo highly pH‐switchable charge selective and pH‐reversible encapsulation. Both PEI@PS and mPS‐PAA can be used for highly charge‐selective separation of ionic dyes but the pH‐reversibility of the encapsulation is relatively limited. In contrast, PEI‐COOH@PS is less effective to differentiate the anionic–cationic dyes but is well recyclable. A physical micelle obtained from the self‐assembly of PEI and mPS‐PAA shows similar property to PEI‐COOH@PS. The combination of these micelles in mixture separation can enhance the recyclability of the micelle and widen the spectrum of mixtures that can be well separated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The micellar structure is usually considered to be composed of a hard sphere (liquid) core and a heavily solvated corona. Therefore, the correction for intermicellar interactions at finite concentrations can be relatively complicated. In this article, small-angle neutron scattering of a copolymer, known as Pluronic L64 (PEO13PPO30PEO13), in o-xylene in the presence of D2O is used to demonstrate that, based on the hard sphere approximation, intermicellar interactions can be corrected by representing the micellar size as having an equivalent hard sphere radius. The procedure remains valid even if the micellar shape becomes asymmetric, with axial ratios of 3 ? 4. For the present system, the equivalent hard sphere radius corresponds to the micellar core radius plus one-half of the micellar shell thickness. With the equivalent hard sphere approach, the scattering behavior of the micelle could be described by using a core-shell structure. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Enantiomeric separations of fluorescently labeled amino acids are studied by capillary electrophoresis (CE) under a novel variety of experimental conditions. Three different labels are evaluated using two different additives: cyclodextrins (beta- and gamma-) and a dual surfactant system of sodium dodecyl sulfate and sodium taurodeoxycholate. Fluorescein-5-isothiocyanate is the best label to use in this cyclodextrin-based system, and dansyl chloride is the best label to use in this dual surfactant system. Possible limitations for separation of the enantiomers using the mixed micelle system include the fact that there is little interaction of the solute with the surfactants, the negative charge of the solute is limiting the separation window of the system, and the amount of the chiral phase available for partitioning is limited. The separations using cyclodextrins as a chiral selector show that the label affects migration order of the enantiomers, and the cyclodextrins are very effective in separating numerous enantiomers. Overall, cyclodextrins are the better buffer additive for CE use, and the dual surfactant systems, including sodium taurodeoxycholate, offer future promise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号