共查询到19条相似文献,搜索用时 46 毫秒
1.
采用传统固相烧结法制备了0.98K0.5Na0.5NbO3-0.02LiNbO3-xCeO2(0.98KNN-0.02LN+xCeO2)无铅压电陶瓷.研究了不同CeO2掺杂含量(x=0、0.01、0.02、0.03、0.04)对0.98KNN-0.02LN陶瓷显微结构和电学性能的影响.研究结果表明:当CeO2掺杂含量从x=0.00到x=0.01和从x=0.02到x=0.03时,样品出现了正交-四方相转变.当x=0.00和x=0.02时,样品都处于正交与四方两相共存状态.CeO2少量掺杂时Ce4+完全进入晶格,表现为"受主"掺杂的特性;而大量CeO2掺杂时,有杂相的生成,主要起到烧结助剂的作用.样品在1080℃下烧结,当掺杂含量为x=0.02时取得最佳的综合性能:d33=104pC/N,Qm=2201,kp=0.24423,εr=804.2,tanδ=8.748;. 相似文献
2.
掺杂量对ZnO陶瓷靶材性能影响的研究 总被引:1,自引:0,他引:1
以ZnO、Al2O3粉体为原料,采用常压烧结方法制备高导电性ZnO: Al陶瓷靶材,并系统研究了Al掺杂量对该靶材的晶体结构、微观形貌以及电学特性的影响.结果表明:Al2O3掺杂量是影响ZnO陶瓷靶材导电性的重要因素之一.随Al: Zn原子比从0: 100变化至8.0: 100,电阻率呈现先递减后递增的规律.当Al: Zn原子比为4.0: 100时,所制备的ZnO陶瓷靶材电阻率最低,为4.1×10-3 Ω·cm;当Al掺杂量超过某一数值后,将导致锌铝尖晶石相(ZnAl2O4)的生成,从而使材料的电阻率升高.为了获得高导电性能的ZnO靶材,必须精确控制Al的掺入量,以防止锌铝尖晶石的生成. 相似文献
3.
基于密度泛函理论广义梯度近似第一性原理计算的方法,系统研究了Ca掺杂ZnO氧化物的晶格结构和电子结构,在此基础上分析了其电学性能.结果表明,Ca掺杂ZnO晶胞减小.Ca掺杂氧化物仍为直接带隙半导体材料,带宽达1.5 eV.掺杂体系费米能级附近的能带主要由Cas态、Cap态、Znp态和Op态电子构成,其中p态电子对价带态贡献最大,且Cas态、Znp态和Op态电子之间存在着更强的相互作用.Ca掺杂ZnO氧化物费米能级EF附近载流子浓度增加,运动速度减小,有效质量增加,导电机构为Cas态、Znp态和Op态电子在价带与导带的跃迁,具有更高的电导率,较高的Seebeck系数和综合电性能. 相似文献
4.
在不同衬底温度条件下采用RF磁控溅射法在石英玻璃上沉积Al-H共掺杂ZnO薄膜.对所有样品进行晶体结构、表面形貌、电学、光学以及室温光致发光性能分析.结果表明:随着衬底温度的升高,ZnO薄膜的结晶度增加,晶粒增大,薄膜致密度增加;薄膜表面起伏变化减小;同时,电阻率最低达到7.58×10-4Ω·cm,透过率保持在75;左右.所有ZnO薄膜样品都以本征发光为主,Al-H共掺杂在一定程度降低ZnO薄膜缺陷发光的强度;随着衬底温度的升高,ZnO薄膜的本征发光强度明显增大;同时在能量为3.45 eV附近观察到了一个紫外发光峰. 相似文献
5.
采用传统固相反应法以V2O5为V5+掺杂源合成制备了CaCu3Ti4-xVxO12(CCTVO,x=0;,1;,3;,5;)陶瓷粉体,研究了V掺杂量对CaCu3Ti4O12(CCTO)物相低温合成及其低温烧结性能的影响,并对V掺杂CCTO陶瓷的低温合成机理和烧结机理进行了分析.XRD结果表明:当V掺杂量为≥1;时,在870℃煅烧20h可以完全获得CCTO物相,而未掺杂的样品则含有明显杂相,这说明V掺杂可以实现CCTO物相在低温下的合成制备.但差热分析表明,V掺杂后会提高CCTO发生固相反应的起始温度.分析认为低温下之所以实现CCTO的制备主要得益于V掺杂后会在高温煅烧过程中形成液相而增强了扩散气质和热传递效应.V掺杂量为3;的粉体在920℃相对较低温度下烧结后,具有较大的晶粒尺寸和高达92.4;的致密度,所得陶瓷在20Hz的低频率下介电常数高达2.28×105. 相似文献
6.
采用固相烧结法制备添加过量MgO的铌镁-铌锰-锆钛酸铅(PMMN)四元系压电陶瓷材料,研究了不同MgO掺杂量对材料结构及压电介电性能的影响.实验结果表明,适量MgO掺杂,不仅不改变PMMN压电陶瓷的钙钛矿相结构,且能提高合成粉体的晶化程度,降低陶瓷的烧结温度,改善材料的压电介电性能.当MsO掺杂量为0.25;质量分数,1130℃烧结的样品性能参数为:d33=310 pC/N,Qm=1008,kp=0.61,tan δ=0.34;,ε33T/ε0=1494,是一种中温烧结功率型压电陶瓷材料,适用于多层压电变压器,超声马达等器件. 相似文献
7.
Al-N共掺杂ZnO的第一性原理研究 总被引:1,自引:0,他引:1
为了研究p型ZnO的掺杂改性,本文运用第一性原理密度泛函理论研究了未掺杂,Al、N单掺杂和Al-N共掺杂ZnO晶体的几何结构、能带结构、电子态密度.计算结果表明:未掺杂,Al、N单掺杂和Al-N共掺杂ZnO的超晶胞体积分别为0.2043 nm3、0.2034 nm3、0.2027 nm3、0.1990 nm3,带隙分别为0.72 eV、0.71 eV、0.60 eV、0.55 eV;N是比较理想的p型掺杂受主,若在禁带中再引入激活施主Al后,可填充的电子数由原来的19个增加到24个,N原子接受从价带跃迁的电子使价带产生非局域化空穴载流子,从而提高了晶体的导电性.与未掺杂,Al、N单掺杂相比,Al-N共掺杂ZnO具有更稳定的结构,更窄的带隙,更好的导电性,更有利于实现p型化. 相似文献
8.
采用水热法制备不同Mn掺杂浓度的Zn1-x Mnx O(0.00≤x≤0.08)材料,采用XRD、UV-vis、PL和SEM对样品的结构和光学性质进行表征与分析,并以亚甲基蓝溶液为模拟污染物,评价了Zn1-x Mnx O材料的光催化性能,考察了Mn的掺杂浓度对ZnO的结构、光学性质和光催化性能的影响.结果显示,所有的Zn1-x Mnx O样品都具有单一的六方纤锌矿结构,未有新相生成.Mn掺杂增强了ZnO的可见光响应,提高了其光生电子-空穴对的分离效率.此外,与纯ZnO相比,Zn1-x Mnx O材料表现出更高的光催化性能,其中,Zn0.96 Mn0.04 O样品的光催化活性最佳,其经过30 min光照后,降解率达到97.0;. 相似文献
9.
以Zn( NO3)3·6H2O、Ce( NO3)3·6H2O为原料,明胶为模板分散剂,采用凝胶模板燃烧法制备纯ZnO和Ce/ZnO纳米晶,利用XRD、TEM、BET、UV-Vis漫反射进行表征.以染料罗丹明B为目标降解物考察了样品的光催化活性.结果表明:产物粒子形状基本为球形,结晶良好,属六方晶系结构.相比纯ZnO,Ce/ZnO对光具有更高的吸收利用率,在紫外和可见光下对罗丹明B的降解能力均有明显提高;随Ce掺杂量的增加,样品的粒径减小,比表面积增大,罗丹明B的降解率相应增大,在紫外和可见光下降解率分别可达98.6;、78.3;,其原因在于Ce掺杂有利于在ZnO纳米粒子中心和表面之间产生电势差,实现光生电子-空穴对的有效分离. 相似文献
10.
11.
12.
13.
以气固反应硫化制备的γ-La2S3粉体为原料,采用放电等离子烧结(SPS)技术制备出γ-La2S3多晶陶瓷.研究了Ba2+掺杂量对得到γ-La2S3粉体物相结构的影响,并分析了烧结温度、再硫化工艺参数对γ-La2S3多晶陶瓷微观组织结构和红外透过率的影响.结果表明:掺入Ba2有利于低温获得稳定的高温型γ-La2S3相,在nLa/nBa为5 ~15时能够得到纯相的γ-La2S3粉体.在烧结温度为1150℃,保温时间为5min时制备出的γ-La2S3陶瓷致密,无明显气孔,在CS2气氛下再硫化2.5h后,在10 ~ 14μm波段的红外峰值透过率达到42%. 相似文献
14.
采用传统电子陶瓷工艺制备了添加Li2CO3-CuO-B2O3(LCB)玻璃为烧结助剂的(Ca0.9375 Sr0.0625)0.3(Li0.5Sm0.5)0.7TiO3 (CSLST)微波介质陶瓷,并对其烧结特性、晶相组成和介电性能进行了系统的研究.结果表明:通过液相烧结,LCB玻璃能有效降低CSLST烧结温度至900℃.XRD分析结果显示添加LCB玻璃后材料中均产生了杂相.性能分析结果发现随着LCB添加量的增大,陶瓷的体积密度、介电常数εr、品质因数与谐振频率乘积Q×f呈现先上升后下降的趋势,频率温度系数Tf则单调降低.添加质量分数为12.5;的LCB玻璃的CSLST陶瓷在900℃下保温5h可以完全烧结,并具有最佳的微波介电性能:εr=77.7,Q×f=1845 GHz,Tf=21.35 × 10-6/℃. 相似文献
15.
16.
采用固相二步合成法,通过在预烧粉料中添加LiBiO2,制备出一种低温烧结的Pb0.95Sr0.05(Zr0.54Ti0.46)O3压电陶瓷材料。LiBiO2的添加具有降低烧结温度同时提高陶瓷性能的优点。实验结果表明:适量的LiBiO2掺杂,可形成过渡液相烧结,使烧结温度降低到950~1050℃,比未添加时的烧结温度低240~340℃。当w(LiBiO2)=1.0%,陶瓷达到最佳压电性能:压电应变常数d33=425 pC/N,平面机电耦合系数kp=57.62%,退极化温度Td=350℃,相对介电常数ε3T3/ε0=1543,介电损耗tanδ=0.0216,剩余极化强度Pr=35.51μC/cm2,体积密度ρ=7.45g/cm3。该材料可应用于低温共烧的叠层压电器件中。 相似文献
17.
18.
利用Adam算法优化后的BP神经网络训练预测P掺杂ZnO后的各体系的缺陷形成能,分析得出最易形成的体系是ZnO∶PZn和ZnO∶PZn(2VZn)体系,反之是ZnO∶PO和ZnO∶PZn(1VZn)体系,之后在第一性原理的基础上研究各体系光电特性,分析可知ZnO∶PZn体系呈n型导电,带隙0.78 eV,大于本征体系。ZnO∶PZn(2VZn)体系呈p型导电,带隙和本征体系相似,电导率与ZnO∶PZn体系相近且都远高于ZnO∶PZn(1VZn)体系,反射率、吸收率和光透率都优于本征ZnO体系。 相似文献
19.
采用固相法制备0.7CaTiO3-0.3NdAlO3微波介质陶瓷,研究添加不同含量纳米ZnO对其烧结特性和微波介电性能的影响.结果表明,掺入ZnO烧结温度降低了100℃,随着ZnO掺量增加,样品介电常数εr和谐振频率温度系数τf减小,品质因数(Q×f)先增大后减小.掺入1.5wt;的ZnO在1350℃烧结4h时性能最佳:εr=36.50,Q×f=23785 GHz,τf=-2.47×10-6/℃. 相似文献