共查询到15条相似文献,搜索用时 46 毫秒
1.
水热法合成Zn1-xNixO稀磁半导体 总被引:9,自引:6,他引:3
本文采用水热法,在温度430℃,填充度35%,矿化剂为3mol/L KOH,前驱物为添加适量N iC l2.6H2O的Zn(OH)2,反应时间24h,合成了Zn1-xN ixO稀磁半导体晶体。当在Zn(OH)2中添加一定量的N iC l2.6H2O为前驱物,水热反应产物为掺杂N i的多种形态ZnO混合晶体,对其个体较大的晶体中进行电子探针测量表明,前驱物中的添加量和晶体中实际掺入量有很大的差异,只有少量的N i离子掺入ZnO,最大N i原子分数含量为0.62%。采用超导量子干涉磁强计测量材料的磁性,发现在室温以下,晶体的磁化强度不随温度升高而下降。在室温下,存在明显的磁饱和现象和磁滞回线,说明具有室温下的铁磁性。 相似文献
2.
采用水热法制备稀磁半导体材料,样品Zn0.95 Fe0.05O和Zn0.95Fe0.03Ni0.02O的XRD图谱和TEM图谱发现,样品具有纤锌矿结构,形貌为纳米棒状结构.XEDS分析显示,掺杂的Fe和Ni元素进入到了ZnO晶体中.RAMAN光谱表明,Zn2+被Fe2+、Ni2+替换,晶体发生拉曼光谱红移.PL光谱分析发现,在室温条件下,随着Fe2+和Ni2+的掺杂,出现了猝灭现象.VSM测量显示,掺杂样品在室温条件下存在明显的铁磁性,且这种铁磁性属于稀磁半导体的内禀属性.实验结果表明在水热法条件下,获得了ZnO基稀磁半导体材料样品,且样品具有良好的光学和磁学特性,为进一步研究稀磁半导体材料提供了一定的参考. 相似文献
3.
4.
5.
采用水热法以CoO、ZnO混合为前驱物制备了ZnO晶体,矿化剂为6 mol/L KOH,填充度70;,温度430℃,两种样品CoO、ZnO组分物质的量百分比分别为0.5∶1和1∶1.当前驱物为nCo∶nZn=0.5∶1时,合成出Zn1-xCoxO晶体,Co元素掺杂量分别为6.83 at;和9.30 at;.当前驱物中nCo∶nZn=1∶1时,Zn1-xCoxO晶体中Co掺杂比例达到9.31 at;,同时伴有Co3O4生成,其中Zn掺杂比例达到14.59 at;,SEM显示,所制备的Zn1-xCoxO具有明显的ZnO晶体特征,形态完整,最大尺度约为50 μm.SQUID测量显示,生成物中Zn1-xCoxO晶体具有顺磁性,Zn1-xCoxO和Co3-xZnxO混合晶体也显示为顺磁性. 相似文献
6.
本文采用水热法,在430℃,填充度为35;,3mol/L KOH作为矿化剂,反应时间为24h,合成了Zn1-xCoxO晶体.当在Zn(OH)2中添加一定量的CoCl2·6H2O为前驱物时,水热反应产物中,可以获得多晶体形态的掺杂Zn1-xCoxO晶体.电子探针测量表明,随着前驱物中CoCl2·6H2O添加量的增加,晶体中的Co实际掺入量也随着增加.采用超导量子干涉磁强仪测量材料的磁性,发现在室温以下,水热法合成的Zn1-xCoxO晶体的磁化强度随温度变化很小,在300K存在明显的磁饱和现象和磁滞回线,表明具有室温下铁磁性. 相似文献
7.
采用水热法以Na2S· 9H2O为硫源,Cd3O12S3·8H2O为镉源,PVP为表面活性剂,成功制备了CdS纳米棒.并利用X射线衍射(XRD)、透射电子显微镜(TEM)和相应选区电子衍射(SAED)、高分辨透射电子显微镜(HRTEM)、X射线能量色散分析谱仪(XEDS)和紫外可见(UV-vis)分光光度计等测试手段对样品的晶体结构、形貌、微观结构和光学特性等特征进行了表征分析,实验结果表明本方法所制备的CdS纳米棒为纤锌矿结构,沿[001]方向择优生长,平均直径大约为50 nm,棒宽均匀、分散性好,带隙为2.43 eV.同时也对CdS纳米棒的形成机理进行了初步探讨,提出了CdS纳米棒的生长模型,其形貌从三角形到阶梯形棒晶,最后再到完整的棒状晶体的一个定向团聚的自组装过程. 相似文献
8.
本文主要考虑不同掺杂量对水热合成Zn1-xNixO稀磁半导体粉体的影响.采用水热法,以3 mol/L NaOH作为矿化剂,在240℃下,保温24 h左右,进行Ni掺杂(x=0.05,0.1,0.2),合成Zn1-xNixO稀磁半导体晶体.XRD、FE-SEM测试表征晶体的物相组成和晶体形貌,XRD表明所制备的zn0.95Ni0.05O稀磁半导体晶体发育比较完整.通过UV-vis测试进一步说明掺杂的效果.VSM测试表明,所制备的样品在室温下有良好的磁滞回线,表现出铁磁性. 相似文献
9.
微波水热法制备ZnO纳米晶 总被引:9,自引:5,他引:4
采用微波水热(microwave hydrothermal,M-H)法在MDS-6型温压双控微波水热反应仪中成功地制备出平均晶粒尺寸为30 nm且呈现棒状形貌的ZnO纳米晶.并在一定的水热温度和反应时间下系统研究了微波水热反应过程中[Zn2+]离子浓度、反应釜填充比、反应物浓度比[Zn2+]/[OH]等工艺因素对ZnO纳米晶的晶粒尺寸及形貌的影响.采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)对所制备的ZnO纳米晶进行表征.结果表明:所制备ZnO的平均晶粒尺寸约为30 nm,ZnO纳米晶呈现棒状形貌.随着[Zn2+]离子浓度的增加,ZnO纳米晶的晶粒尺寸先减小后增大;随着反应釜填充比和反应物浓度比[Zn2+]/[OH]的增大,ZnO纳米晶的晶粒尺寸先减小后增大,并逐渐趋于稳定.制备ZnO纳米晶的最佳反应条件为:[Zn2+]=1.6 mol·L-1;反应釜填充比=70;;[Zn2+]/[OH]=1/2. 相似文献
10.
水热法合成Mnx Zn1-xO微晶体 总被引:1,自引:1,他引:0
本文采用水热法合成了MnxZn1-xO晶体,水热反应条件为3mol·L-1KOH作为矿化剂,填充度为35;,温度为430℃,在Zn(OH)2中添加一定量的MnO2为前驱物,反应时间为24h.通过X射线能谱仪测量了晶体中的Mn含量,随着前驱物中MnO2含量的增加,晶体中Mn的原子百分比随着增加,Mn最大原子百分比含量超过了2;,晶体的形貌具有纯ZnO晶体的六角柱形特征.显露柱面m{1010}、锥面p{1011}、负极面O面{0001}和正极面{0001}.晶体直径为50~200μm,高度为20~100μm. 相似文献
11.
以CoCl2·6H2O和CO(NH2)2为原料,采用水热法低温合成CoO纳米线.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析(EDS)和紫外-可见吸收光谱仪(UV-vis)对所得样品的结构、形貌和光吸收性能进行表征和测定.结果表明,所得样品由面心立方晶型CoO纳米线组成,纳米线的直径和长度分别约为150 nm和4.0 μm,且沿(111)晶面方向择优生长.紫外-可见吸收测试显示CoO纳米线具有较宽的紫外-可见光吸收范围,通过计算得出CoO纳米线光学带隙为2.70 eV. 相似文献
12.
采用水热法制备了一种线型结构钛酸钠晶体,其直径为50 ~ 200 nm,长度为几微米到几十微米.利用XRD、SEM和UV-vis等测试手段表征了材料的晶化、结构、形貌及光学性能.研究结果表明:水热反应时间和温度对线型结构钛酸钠微晶的形成具有显著的影响;其最佳的反应条件:反应温度为180℃和反应时间为24h.并初步探讨了钛酸钠线型微晶的生长机理.650℃高温烧结处理得到的线型结构TiO2微晶,具有较高的紫外光光催化活性:0.5 g/L浓度TiO2线型微晶,对初始浓度为20 mg/L甲基橙溶液1h光催化降率可达80;以上. 相似文献
13.
采用水热法,以CeCl3·7H2O为铈源、NaOH为矿化剂、乙二胺为络合剂,通过改变反应时间制备出CeO2纳米棒.通过X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外可见近红外分光光度计(UV-Vis)和荧光光谱(PL)对产物进行表征,结果表明产物中存在缺陷,Ce的主要价态为+4价且产物中存在少量Ce3.当反应时间为2h、18 h、50 h、100 h所得产物能带间隙分别为3.014 eV、3.143 eV、2.931 eV、2.927eV,这些数据比块状CeO2带隙小,样品带隙红移是由氧空位与Ce3引起的.四个样品的荧光光谱呈现出相似的发射峰,发射峰强度随着氧空位与Ce3浓度的增加而增加. 相似文献
14.
采用水热法制备了纳米带状结构的Zn3 V2O8多晶粉体,并对Zn3 V2 O8漫反射光谱以及发射谱、激发谱进行了分析.结果表明,在230 ~450 nm波长范围为全吸收,激发谱上有一个宽带激发与窄带激发,峰值分别位于350 nm与272 nm.在发射谱上的宽带发射与窄带发射,峰值分别在528 nm与716 nm.降解率实验结果表明了当光照时间延长到3h后,水热合成Zn3 V2O8基本已完全降解亚甲基蓝溶液. 相似文献
15.
以Co(NO3)2·6H2O,Fe(NO3)3·9H2O,NaOH为原料,在不同外加磁场条件下进行水热处理,分别制备了颗粒尺寸为几纳米到20 nm的CoFe2O4纳米颗粒,通过XRD,TEM和振动样品磁强计对其晶体形貌和宏观磁性能进行表征.结果表明,采用水热法制备的CoFe2O4可获得纯度较高晶粒生长完整的CoFe2O4磁性纳米微粒,稳恒磁场条件对晶格常数,磁性能有较大的影响.当稳恒磁场在一定范围内时,随着稳恒磁场的增加,磁性颗粒的粒径增大,样品室温下的饱和磁化强度逐渐增大.但是当稳恒磁场超出一定范围时,随着稳恒磁场的减小,磁性颗粒的粒径减小,样品室温下的饱和磁化强度逐渐减小. 相似文献