首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The absorption and fluorescence behaviour of thionine dye in sodium decyl sulphate (sds) medium has been studied in detail. The transient spectra and kinetics of decay of semithionine species produced by photoreduction of thionine by ferrous ions has-been studied using flash photolysis technique. The results have been compared with those in neat aqueous medium and in sodium lauryl sulphate (sls) media published earlier. It was found that the decay of semithionine which is kinetically second order in neat aqueous medium becomes pseudo first order as in thesls medium; however unlike in the latter case, the pseudo first order rate decreases with increasing surfactant concentration at all concentrations of ferric ion. The effect of electrolyte concentration on transient semithionine spectra and decay kinetics has also been studied. It was found that with increasing NaCl concentration the transient absorbance decreases and the decay slowly reverts back to second order as in aqueous medium. Insds medium as compared tosls a much higher concentration of NaCl is needed for the reaction to become second order which is attributed to stronger binding of ferric ions to thesds micelles.  相似文献   

2.
One-electron oxidation of thionine has been studied using specific oxidizing radicals such as ClTl(II) and N3 generated by pulse radiolysis of aqueous solutions. The semioxidized thionine exhibited threepK’s indicating four conjugate acid-base forms. N3 radicals were found to be less efficient in oxidizing thionine as compared to Cl 2 , Tl2+ and Tl(OH)+. The rate constants for electron abstraction from thionine by Cl 2 , Tl2+, Tl(OH)+, Tl(OH)2 and N3 were evaluated. The spectra of different protonated forms of semioxidized thionine and the extinction coefficients at λmax are presented. Reaction of OH radicals with thionine gave transient products whose spectra and acid-base properties were different from those of semioxidized thionine. The rate constant for formation of the product transient agrees well with competition kinetic value for reaction of OH with thionine reported earlier.  相似文献   

3.
Spectrophotometry and lamp and laser flash photolysis have been used to investigate the kinetics of the formation and decay of thionine and semithionine, obtained in the photooxidation of the thionine leuco base with uranyl nitrate. It has been shown that after the light flash a certain amount of thionine is formed in the cage oxidation of semithionine with uranoyl UO2 + (concentration ratio of thionine and semithionine leaving the cage 595). A kinetic scheme of the reaction has been proposed, which describes satisfactorily the experimental data. The equilibrium constant K=1.2±0.3)·10–4 has been obtained for the dark oxidation of the thionine leuco base with uranyl nitrate in aqueous sulfuric acid (pH 1.0) which is close to the calculated value.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 13–18, January, 1990.  相似文献   

4.
Reduction kinetics of thionine (Th) with D-galactose (RH) was observed on a UV/Visible 1601 Shimadzu spectrophotometer at λmax 599 nm. The results showed that the initially slow reduction kinetics got enhanced and proceeded to completion within a few minutes. A pseudo first order kinetics was observed when influence of different parameters like concentration of dye and reductant, ionic strength and temperature was investigated. A significant shift in wave length from 599 to 517 nm was observed at alkaline pH whereas addition of a small amount of acid caused a shift in equilibrium. This resulted in the generation of oxidized form of thionine which was pragmatic in the presence of atmospheric oxygen. Change in ionic strength at elevated temperature lied to decrease in the rate constant. Thermodynamics activation parameters like Ea reflects a high amount of energy required for reduction of Th with RH whereas entropy of activation (∆S!) and free energy of activation (∆G!) show the highly solvated states of transient complex which was less disorderly arranged than the oxidized form of dye. A mechanism consistent with above findings has been discussed in the relevant section of paper.  相似文献   

5.
A new photoelectrochemical method for the determination of glucose based on the photoelectrochemical effect of poly(thionine) photoelectrode to hydrogen peroxide (H2O2) was reported. The H2O2‐sensitive photoelectrode was fabricated by electropolymerizing thionine on the surface of ITO electrode. And then glucose oxidase was immobilized on the photoelectrode via the aid of chitosan enwrapping, forming an enzyme‐modified photoelectrode. The photoelectrode was employed as an electron acceptor; H2O2 from the catalytic reaction of enzyme was employed as an electron donor, developing an analytical method of glucose without hydrogen peroxidase. In the paper, the photoelectrochemical effects of photoelectrode to H2O2 and glucose were studied. The effects of the bias voltage and the electrolyte pH on the photocurrent were investigated. The linear response of glucose concentrations ranged from 0.05 to 2.00 mmol/L was obtained with a detection limit of 22.0 µmol/L and sensitivity of 73.2 nA/(mmol·L?1). The applied feasibility of method was acknowledged through monitoring the glucose in practical samples.  相似文献   

6.
Lytic transglycosylases such as Slt35 from E. coli are enzymes involved in bacterial cell wall remodelling and recycling, which represent potential targets for novel antibacterial agents. Here, we investigated a series of known glycosidase inhibitors for their ability to inhibit Slt35. While glycosidase inhibitors such as 1-deoxynojirimycin, castanospermine, thiamet G and miglitol had no effect, the phenothiazinium dye thionine acetate was found to be a weak inhibitor. IC50 values and binding constants for thionine acetate were similar for Slt35 and the hen egg white lysozyme. Molecular docking simulations suggest that thionine binds to the active site of both Slt35 and lysozyme, although it does not make direct interactions with the side-chain of the catalytic Asp and Glu residues as might be expected based on other inhibitors. Thionine acetate also increased the potency of the beta-lactam antibiotic ampicillin against a laboratory strain of E. coli.  相似文献   

7.
The reaction between the thionine (Th) and the ribose was observed spectrophotometrically and changes in absorbance of Th were recorded at variable concentration of dye, reductant and pH. A pseudo first order rate of reaction was found to establish the reduction kinetics of the dye, studied at a pH range of 0.34 to 12.8. Absorption spectrum of Th at different pH, with ribose showed a pH (12.8) dependent introversion. The reduction most probably took place with enediol intermediate of the sugar at high pH. A full geometry optimization of predominant species of Th namely, mono‐deprotonated, di‐deprotonated Th, and LTh (leuco thionine) respectively, at low and high pH, was performed at B3LYP level of theory. The data obtained from the energy minimization were in excellent agreement with other experimental and theoretical observations. The calculated enthalpies of formation for both reduction reactions (mono‐deprotonated Th+H+→leucothionine and di‐deprotonated Th+2H+→leucothionine) provided evidences for maximum reduction of the dye at high pH.  相似文献   

8.
Manganese(III) sulfato complexes cause the oxidative degradation of methylene blue and its partially and fully N-demethylated derivatives, azure B and thionine dyes, respectively, in sulfuric acid media. The reaction proceeds through a colored reactive organic radical generated in the first stage via one-electron oxidation of the starting material, leading to a mixture of N-demethylated and/or deaminated species. The rates of formation of the methylene blue and azure B radicals are much higher than those of their further decomposition, whereas the generation of the thionine radical is much slower than its immeasurably fast decay. The kinetics of decomposition of all three dyes and the methylene blue and azure B radicals were studied spectrophotometrically under isolation conditions at 298 K. The first stage of each reaction proceeds according to a second-order rate expression, being first order in the dyes and in the manganese(III) concentrations. Dependence of the pseudo-first-order rate constants on the oxidant concentration for the second stage exhibits a saturation effect under the applied conditions. It is postulated that electron transfer takes place between the [Mn(SO4)3]3− complex and the protonated form of the dye. The reactivity order of the dyes as determined from the second-order rate constants for the first reaction stage corresponds to the order of their HOMO energies.  相似文献   

9.
Abstract— In order to gain further insight into the sensitized photooxygenation of the system thionine, allylthiourea, and oxygen, the influence of the leucothionine, which is formed during the photoreaction, was studied by flash photolysis. In the presence of leucothionine, additional thionine (Λobs= 598 nm) is reformed; i.e., leucothionine is oxidized to thionine by way of a semithionine intermediate (Λbs= 770 nm). This additional semithionine formation due to leucothionine is complete by 30 μsec after the flash. By varying the leucothionine concentration, the flash intensity and the pH it can be shown that the agent which oxidizes leucothionine to semithionine is identical to the agent which transforms semithionine to thionine.  相似文献   

10.
The electrochemical properties of thionine dye adsorbed into ZSM-5 and HZSM-5 zeolites (TH/ZSM-5, TH/HZSM-5) are studied in 0.5 M KCl solution. The dye is strongly retained and not easily leached from the zeolites matrix. The samples are incorporated into the carbon paste electrode (TH/ZSM-5/P, TH/HZSM-5/P) for cyclic voltammetric measurements. The redox reactions of thionine incorporated into ZSM-5 zeolite contain a quasi-reversible, two-electron one proton in the pH range 1 to 10, but thionine-loaded HZSM-5 zeolite undergoes a quasi-reversible two-electron two-protons redox reaction under acidic conditions and a one proton two-electron redox reaction takes place under basic conditions. The separation of the anodic and cathodic potentials (E p) is high in thionine-loaded zeolites (>100) with respect to the solution of thionine (E p = 34 for ZSM-5/P and 36 mV for HZSM-5/P), indicating that there are strong interaction between thionine molecules and the zeolites. The midpoint potentials (E m) for TH/ZSM-5/P and TH/HZSM-5/P are −0.203 and −0.381 V, respectively. However, the midpoint potentials for the solution of thionine for the electrode system of ZSM-5/P and HZSM-5/P are −0.335 and −0.407 V, respectively. Thus, thionine dye molecules incorporated into the zeolites can be reduced more easily with respect to solution of thionine. In various electrolyte solutions, the midpoint potentials remains constant, but the midpoint potential of the thionine-zeolite electrodes depends on the solution pH. Influence of the pH of the solution on the midpoint potential of an immobilized dye reveals that thionine molecules are accessible to protons. This property is ascribed to the formation of mesopores in the structure of our zeolites suffering from a calcination step. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 794–800. The text was submitted by the authors in English  相似文献   

11.
Abstract— The photooxygenation of allylthiourea (ATU) sensitized by thionine does not occur according to the singlet oxygen mechanism but rather proceeds via the formation of radicals. In oxygen-free solution the primary process is a redox reaction between the thionine triplet and ATU where a semithionine- and an ATU-radical are formed. In further reaction steps the leuco form of the dye is finally produced (reductive photobleaching; D
R mechanism after Koizumi). The primary process in an oxygen-containing aqueous solution is the same, since at high concentrations of ATU (0·2 M ) the amount of semithionine formed by a photolytic flash, as well as the time course of disappearance of semithionine, does not depend on the oxygen content of the solution.
The reformation of thionine following flash photolysis has been investigated with regard to oxygen concentration and pH dependence. Two different excitation intensities were used. A quadratic dependence of thionine reformation on excitation intensity at high oxygen concentration was observed, indicating a reaction between two photoproducts.
The dependence of the reaction rate of semithionine on the ionic strength has been investigated. These experiments show that the reaction partner of semithionine carries a charge of + 1 in oxygen-free as well as in oxygen-saturated solution.  相似文献   

12.
Pulse radiolysis technique has been used to characterise the transients formed by the reaction of sulphacetamide with eaq - and subsequently study the electron transfer reactions from the transient to various electron acceptors such as thionine, safranine-T and methyl viologen. The results indicate that the semi-reduced sulphacetamide species are highly reducing in nature as they transfer electrons to various dyes with near diffusion controlled rates (k > 109dm3mol−1s−1) in alkaline and acidic solutions. The influence of oxygen on the decay behaviour of semi-reduced species has been investigated and the results show that O2 reaction with SA is very fast (k = 1.5 × l09dm3mol−1s−1) and leads to the formation of a permanent-coloured product. Reactions of H.atoms resulted in the formation of two transient species whose spectral, kinetic and acid-base characteristics have also been investigated.  相似文献   

13.
Abstract— While studying the photoreduction of some dyes (D) by reducing agents (R), it was observed that the quantum yield of the photoreduction increases considerably upon addition of a third substance (C), whereas it is very small when the dye is photoreduced by C alone (catalytic effect), (see Table 1).
The system thionine (D), allylthiourea (R), and azulene (C) was investigated in detail using both flash photolysis and continuous illumination. On photolysis, thionine is converted into its photo-reduced form, leucothionine. Azulene reacts with the basic form of the thionine triplet 3 TH + to produce the semithionine radical. In the system thionine and azulene, most of these radicals revert back to thionine. When ATU (˜ 102- M ) is added to thionine and azulene (3 × 10-4 M ), the semithionine radicals are reduced to leucothionine; the quantum yield of this reduction is considerably higher than in the system thionine and allylthiourea. Flash experiments demonstrate that allylthiourea does not react with the semithionine radicals.
At very high ATU concentrations (≥ 10-1 M ), however, the primary reaction is between thionine triplet and allylthiourea; under these conditions the quantum yield is not influenced by azulene (3 × 10-4 M ).  相似文献   

14.
A sensitive nitrite (NO2) biosensor was fabricated by using sodium dodecyl sulfate (SDS), Au nanorods, and thionine functionalized MWCNTs (TH‐f‐MWCNTs) nanohybrids modified glassy carbon electrode. TH was covalently immobilized on the MWCNTs via a carbodiimide reaction. Comparing with MWCNTs/GCE, TH‐f‐MWCNTs/GCE displays higher catalytic activity toward the oxidation of NO2, since TH not only promoted the electronic transmission but also could improve the concentration of NO2 at the surface of the modified electrode in acidic solutions. The Au nanorods (AuNRs) were prepared through a simple wet chemical method and were characterized by TEM. The extremely high surface‐to‐volume ratios associated with one dimension nanostructures make their electrical properties extremely sensitive to species adsorbed on surfaces and result in excellent sensitivity and selectivity. SDS displays excellent film forming ability, which made the electrode stable. Under optimal conditions, the linear range for the detection of nitrite was 0.26 to 51 μM, and the low detection limit was 20 nM. In addition, the modified electrode was successfully applied to determine nitrite in real water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Poly(thionine) (PTH) film was generated on the electrochemically activated glassy carbon electrode (GCE(ea)) by using the two‐step cyclic voltammetric scan. Scanning electron microscopy, infrared spectral analysis and electrochemical measurement were employed to characterize the modified electrode surface. Hydroxyl radicals, which were produced by the Fenton‐like reaction, could induce the effective oxidization of PTH under near‐neutral condition and cause the notable enhancement of the cathodic peak current (Ipc) during the potential cycling process. Due to the binding of copper ions with the ligands liberated from VB12 and the inferior catalytic ability of Co2+ for the generation of hydroxyl radicals, the addition of VB12 into the Cu2+?H2O2 system inhibited the oxidization of PTH and resulted in the decrease of the Ipc value. The cathodic peak current change was linear with the logarithm of the VB12 concentration in the range of 10 nmol L?1–100 μmol L?1 with a detection limit of 2 nmol L?1 under optimal conditions. The developed sensor displayed excellent analytical performance including high sensitivity, good selectivity, acceptable reproducibility and satisfactory stability. The VB12 content in the injection sample was measured and the recovery values were in the range of 92.0 %–102 %.  相似文献   

16.
徐颖  蒋莹  杨琳  何品刚  方禹之 《中国化学》2005,23(12):1665-1670
In this work, the application of a conducting polymer, poly(thionine), modified electrode as matrix to DNA immobilization as well as transducer to label-free DNA hybridization detection was introduced. The electropolymerization of thionine onto electrode surface was carried out by a simple two-step method, which involved a preanodization of glassy carbon electrode at a constant positive potential in thionine solution following cyclic voltammetry scans in the solution. Electrochemical detection was performed by differential pulse voltammetry in the electroactivity potential domain of poly(thionine). The resulting poly(thionine) modified electrode showed a good stability and electroactivity in aqueous media during a near neutral pH range. Additionally, the pendant amino groups on the poly(thionine) chains enabled poly(thionine) modified electrode to immobilize phosphate group terminated DNA probe via covalent linkage. Hybridization process induced a clear decrease in poly(thionine) redox current, which was corresponding to the decrease in poly(thionine) electroactivity after double stranded DNA was formed on the polymer film. The detection limit of this electrochemical DNA hybridization sensor was 1.0 × 10^-10mol/L. Compared with complementary sequence, the hybridization signal values of 1-base mismatched and 3-base mismatched samples were 63.9% and 9.2%, respectively.  相似文献   

17.
Rate constants for reactions of 2-pyridinol with one electron reductants, such ase aq and H atoms and one-electron oxidants, viz. OH, N3, Br 2 , C1 2 and O have been determined at different pH values using the pulse radiolysis technique. From the corrected absorption spectra of the product transient species, the extinction coefficients of these species at their respective absorption maxima have been determined. The kinetics of decay of these transients have been investigated. ThepK a values of transients formed bye aq and OH radical reactions have been estimated to be 7.6 and 3.5 respectively. Rate constants for electron transfer from semireduced 2-pyridinol to different electron acceptors have been determined.  相似文献   

18.
A novel enzyme immobilization technique based on thionine‐bovine serum albumin conjugate (Th‐BSA) and gold colloidal nanoparticles (nano‐Au) was developed. Thionine was covalently bound onto the BSA film with glutaraldehyde(GA) as cross‐linker to achieve Th‐BSA conjugate. The free amino groups of thionine were then used to attach nano‐Au for the immobilization of horseradish peroxidase (HRP). Such nano‐Au/Th‐BSA matrix shows a favorable microenvironment for retaining the native activity of the immobilized HRP and thionine immobilized in this way can effectively shuttle electrons between the electrode and the enzyme. The proposed biosensor displays excellent catalytic activity and rapid response for H2O2. The linear range for the determination of H2O2 is from 4.9×10?7 to 1.6×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelies‐Menten constant K value of 0.023 mM.  相似文献   

19.
A kinetic study has been carried out on the oxidation of N, N, N′, N′,-tetraethyl-p-phenylenediamine (TEPD) by metal ion like Ce4+, oxoanions viz., MnO4? and Cr2O72?; peroxides such as peroxomonosulphate (PMS), peroxodisulphate (PDS), and H2O2; and halogens namely Cl2, Br2, and I2. The fast kinetics of the formation and decay of the radical cation TEPD˙+ have been analyzed at 565 nm by the stopped-flow technique under pseudo-first-order conditions. From the kinetic data, it has been inferred that the reactions were found to be of first-order with respect to [TEPD] and [oxidant] but over all it has been of second-order. The observed second-order rate constants in both the formation and decay of TEPD˙+ has been correlated with the oxidation potentials of the various oxidants employed in this study. The effect of pH on the oxidation has been investigated in the formation and decay of TEPD˙+ as well as reduction studies have also been carried out using dithionite which has been found to regenerate the TEPD from the TEPD˙+ and the corresponding rate constant has also been determined. Besides these, this article also explains how the TEPD, which forms TEPD˙+ acts as a better electron relay than TMPD(N, N, N′, N′-tetramethyl-p-phenylenediamine) which forms TMPD˙+, even though both of them undergo one-electron oxidation and are used in the chemical routes to solar energy conversions. The observed rate constants for electron transfer were correlated theoretically using Marcus theory. The observed and calculated rate constants have good correlation. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Pulse radiolysis of aqueous solutions of terephthalonitrile (TPN) was carried out to study the redox properties of anions of TPN, by determining the rate constants for the reaction of TPN with specific one-electron reducing species formed on reaction of OH radicals with methyl,ethyl,isopropyl alcohols,tetrahydrofuran and cytosine. Formation of anions of TPN, which absorb at wavelength 340 nm, was followed. From the graph of rate constants and maximum absorbance vs reduction potential of reducing species, reduction potential of TPN was found out to be —0.85 V vs NHE. Reduction of thionine (TH+) and methyl viologen (MV2+) with the help of radical anions of TPN was carried out to establish its high reduction potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号