首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子动力学模拟方法研究了大离子与聚电解质/表面活性剂复合物的相互作用, 考察了大离子的电性、直径、表面电荷、浓度等对其与复合物相互作用的影响. 结果表明, 与聚电解质所带电性相同的大离子对复合物作用不明显, 只有当大离子所带电荷较多时, 才会引导少量表面活性剂从复合物中脱离. 当大离子所带电荷与聚电解质所带电荷电性相反时, 大离子的加入会诱导复合物的解离, 表面活性剂从复合物中释放出来, 甚至导致聚电解质/表面活性剂复合物的完全解离, 从而形成聚电解质/大离子复合物; 大离子所带电荷越多, 诱导作用越明显. 大离子的直径及浓度对其与复合物之间的作用也有很大的影响, 对于所带电荷数相同的大离子而言, 直径越小, 其与复合物的作用越显著, 越容易引导表面活性剂从复合物中解离, 若大离子的表面电荷密度相同, 大离子直径越小, 反而与复合物的作用越弱; 大离子浓度越高, 越易引起复合物的解离, 复合物中聚电解质链上结合的大离子数增多直至饱和, 相应的会出现电荷反转现象.  相似文献   

2.
The penetration of cationic polyelectrolytes into anionic cellulosic fibers was evaluated with fluorescent imaging techniques in order to clarify the mechanism and time scales for the diffusion process. The bulk charge of the cellulosic fibers indirectly creates a driving force for diffusion into the porous fiber wall, which is entropic in nature due to a release of counterions as the polyelectrolyte adsorbs. The individual bulk charges in the fiber cell wall also interact with the diffusing polyelectrolyte, such that the polyelectrolyte diffuses to the first available charge and consequently adsorbs and remains fixed. Thus, subsequent polyelectrolyte chains must first diffuse through the adsorbed polyelectrolyte layer before adsorbing to the next available bulk charges. This behavior differs from earlier suggested diffusion mechanisms, by which polyelectrolytes were assumed to first adsorb to the outermost surface and then reptate into the pore structure. The time scales for polyelectrolyte diffusion were highly dependent on the flexibility of the chain, which was estimated from calculations of the persistence length. The persistence length ultimately depended on the charge density and electrolyte concentration. The charge density of the polyelectrolyte had a greater influence on the time scales for diffusion. High charge density polyelectrolytes were observed to diffuse on a time scale of months, whereas the diffusion of low charge density polyelectrolytes was measured on the order of hours. An influence of the chain length, that is, steric interactions due the persistence length of the polyelectrolyte and to the tortuosity of the porous structure of the fiber wall, could only be noted for low charge density polyelectrolytes. Increasing the electrolyte concentration increased the chain flexibility by screening the electrostatic contribution to the persistence length, in turn inducing a faster diffusion process. However, a significant change in the diffusion behavior was observed at high electrolyte concentrations, at which the interaction between the polyelectrolyte charges and the fiber charges was almost completely screened.  相似文献   

3.
The condensation of monovalent counterions and trivalent salt particles around strong rigid and flexible polyelectrolyte chains as well as spherical macroions is investigated by Monte Carlo simulations. The results are compared with the condensation theory proposed by Manning. Considering flexible polyelectrolyte chains, the presence of trivalent salt is found to play an important role by promoting chain collapse. The attraction of counterions and salt particles near the polyelectrolyte chains is found to be strongly dependent on the chain linear charge density with a more important condensation at high values. When trivalent salt is added in a solution containing monovalent salt, the trivalent cations progressively replace the monovalent counterions. Ion condensation around flexible chains is also found to be more efficient compared with rigid rods due to monomer rearrangement around counterions and salt cations. In the case of spherical macroions, it is found that a fraction of their bare charge is neutralized by counterions and salt cations. The decrease of the Debye length, and thus the increase of salt concentration, promotes the attraction of counterions and salt particles at the macroion surface. Excluded volume effects are also found to significantly influence the condensation process, which is found to be more important by decreasing the ion size.  相似文献   

4.
We study salt-induced charge overcompensation and charge inversion of flexible polyelectrolytes via computer simulations and demonstrate the importance of ion excluded volume. Reentrant condensation takes place when the ion size is comparable to monomer size, and happens in a middle region of salt concentration. In a high-salt region, ions can overcharge a chain near its surface and charge distribution around a chain displays an oscillatory behavior. Unambiguous evidence obtained by electrophoresis shows that charge inversion does not necessarily appear with overcharging and occurs when the ion size is not big. These findings suggest a disconnection of resolubilization of polyelectrolyte condensates at high salt concentration with charge inversion.  相似文献   

5.
We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.  相似文献   

6.
Aqueous solutions of proteins and oppositely charged polyelectrolytes were studied at different polyelectrolyte chain length, ionic strength, and protein-protein interaction potential as a function of the polyelectrolyte concentration. One of the protein models used represented lysozyme in aqueous environment. The model systems were solved by Monte Carlo simulations, and their properties were analyzed in terms of radial distribution functions, structure factors, and cluster composition probabilities. In the system with the strongest electrostatic protein-polyelectrolyte interaction the largest clusters were formed near or at equivalent amount of net protein charge and polyelectrolyte charge, whereas in excess of polyelectrolyte a redissolution appeared. Shorter polyelectrolyte chains and increased ionic strength lead to weaker cluster formation. An inclusion of nonelectrostatic protein-protein attraction promoted the protein-polyelectrolyte cluster formation.  相似文献   

7.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

8.
The adsorption of single polyelectrolyte molecules onto surfaces decorated with periodic arrays of charged patches was studied using Brownian dynamics simulations. A free-draining, freely jointed bead-rod chain was used to model the polyelectrolyte, and electrostatic interactions were incorporated using a screened Coulombic potential with the excluded volume accounted for by a hard-sphere potential. The simulations predicted that the polyelectrolyte lies close to the adsorbing surface if the patch length, surface charge density, and screening length are sufficiently large. Chain conformations were found to be very sensitive to patch length, patch spacing, and the nature of the charge on adjacent patches. This is due both to the size of the polymer relative to patch length and spacing and to the structure of the electric field near the surface. In some cases, the component of the radius of gyration parallel to the surface can be made smaller than its free-solution value, which is contrary to what is observed for a uniformly charged surface. Isolated charged patches were also considered, and significant adsorption was observed above a critical surface charge density. The results demonstrate how polyelectrolyte conformations can be controlled by the design of the charged patches and may be useful for applications in which adsorbed polyelectrolyte films play a key role.  相似文献   

9.
The electrophoretic behavior of a spherical dispersion of polyelectrolytes of arbitrary concentration is analyzed theoretically under a salt-free condition, that is, the liquid phase contains only counterions which come from the dissociation of the functional groups of polyelectrolytes. We show that, in general, the surface potential of a polyelectrolyte increases nonlinearly with its surface charge. A linear relation exists between them, however, when the latter is sufficiently small; and the more dilute the concentration of polyelectrolytes, the broader the range in which they are linearly correlated. If the amount of surface charge is sufficiently large, counterion condensation occurs, and the rate of increase of surface potential as the amount of surface charge increases declined. Also, it leads to an inverse in the perturbed potential near the surface of a polyelectrolyte, and its mobility decreases accordingly. For a fixed amount of surface charge, the lower the concentration of polyelectrolytes and/or the lower the valence of counterions, the higher the surface potential. The qualitative behavior of the mobility of a polyelectrolyte as the amount of its surface charge varies is similar to that of its surface charge.  相似文献   

10.
We report a nonlocal density functional theory (NLDFT) for polyelectrolyte solutions within the primitive model; i.e., the solvent is represented by a continuous dielectric medium, and the small ions and polyions by single and tangentially connected charged hard spheres, respectively. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for hard-sphere repulsion, an extended first-order thermodynamic perturbation theory for chain connectivity, and a quadratic functional Taylor expansion for electrostatic correlations. With the direct and cavity correlation functions of the corresponding monomeric systems as inputs, the NLDFT predicts the segment-level microscopic structures and adsorption isotherms of polyelectrolytes at oppositely charged surfaces in good agreement with molecular simulations. In particular, it faithfully reproduces the layering structures of polyions, charge inversion, and overcharging that cannot be captured by alternative methods including the polyelectrolyte Poisson-Boltzmann equation and an earlier version of DFT. The NLDFT has also been used to investigate the influences of the small ion valence, polyion chain length, and size disparity between polyion segments and counterions on the microscopic structure, mean electrostatic potential, and overcharging in planar electric double layers containing polyelectrolytes.  相似文献   

11.
The competitive interactions in ternary systems consisting of a slightly cross-linked polyelectrolyte hydrogel and the mixture of linear polyelectrolyte and micelle forming surfactant both oppositely charged relative to the polyelectrolyte network were studied. It was shown that the equilibrium in the competitive reactions depends on the linear polyion charge density and the length of the surfactant aliphatic radical. Dependency on these characteristics the interpolyelectrolyte complex formed by cross-linked and linear polyelectrolytes can uptake surfactant ions from water solution transforming into the cross-linked polyelectrolyte-surfactant complex and releasing the linear polyelectrolyte or vice versa. The ternary systems of this kind are perspective to design the novel family of delivery constructs.  相似文献   

12.
Using the ground state dominance approximation and a variational theory, we study the encapsulation of a polyelectrolyte chain by an oppositely charged spherical surface. The electrostatic attraction between the polyelectrolyte and the surface and the entropy loss of the encapsulated polyelectrolyte chain dictate the optimum conditions for encapsulation. Two scenarios of encapsulation are identified: entropy-dominated and adsorption-dominated encapsulation. In the entropy-dominated encapsulation regime, the polyelectrolyte chain is delocalized, and the optimum radius of the encapsulating sphere decreases with increasing the attraction. In the adsorption-dominated encapsulation regime, the polyelectrolyte chain is strongly localized near the surface, and the optimum radius increases with increasing the attraction. After identifying a universal encapsulation parameter, the dependencies of the optimum radius on the salt concentration, surface charge density, polymer charge density, and polymer length are explored.  相似文献   

13.
Efficient synthetic strategies are described for the preparation of rodlike polyelectrolytes based on the intrinsically rigid poly(p-phenylene). Uncharged precursors were first prepared via the Suzuki coupling and then characterized by different methods of polymer analysis. Finally, they were transformed into polyelectrolytes using macromolecular substitution reactions. Depending on the substitution pattern, the obtained polyelectrolytes are either soluble or insoluble in water. Using water-soluble derivatives, the Poisson-Boltzmann cell model was tested by osmotic measurements and small-angle X-ray scattering. It is shown that the cell model provides a good first approximation of the distribution of the counterions around the macroion but still underestimates their correlation. Moreover, the PPP polyelectrolytes show a very pronounced polyelectrolyte effect. Since the rodlike PPPs are very rigid in shape, this observation proves that the polyelectrolyte effect is caused by long-range intermolecular electrostatic repulsion of the dissolved macroions rather than due to conformational changes.  相似文献   

14.
The effect of replacing the conventional uniform macroion surface charge density with discrete macroion charge distributions on the structure of electric double layer (EDL) of a spherical macroion has been investigated by Monte Carlo (MC) simulations. Two discrete models have been investigated in addition to the central macroion charge: point charges localized on the macroion surface and finite-sized charges protruding into the solution. Both models have been studied with fixed and mobile macroion charges. The radial functions of local densities and electrostatic potential in EDL, are calculated and compared to the results obtained for the central macroion charge distribution. It is concluded that the model of charge distribution significantly affects the EDL structure close to the macroion, while the effect is much weaker at larger distances. With point charges localized on the macroion surface, counterions become stronger accumulated to the macroion, as a result the absolute values of surface potential ?0 and zeta ξ potential are decreased. With protruding charges, the excluded volume effect dominates over the increased correlation ability; hence the counterions are less accumulated near the macroions and the absolute values of ?0 and ξ potentials are increased.  相似文献   

15.
The phenomenon of counterion condensation around a flexible polyelectrolyte chain with N monomers is investigated by Monte Carlo simulations in terms of the degree of ionization alpha, which is proportional to the effective charge. It is operationally defined as the ratio of observed to intrinsic counterion concentration, alpha = co/ci. The observed counterion concentration in the dilute polyelectrolyte solution is equivalent to an electrolyte solution of concentration co with the same counterion chemical potential. It can be determined directly by thermodynamic experiments such as ion-selective electrode. With the polyelectrolyte fixed at the center of the spherical Wigner-Seitz cell, the polymer conformation, counterion distribution, and chemical potential can be obtained. Our simulation shows that the degree of ionization rises as the polymer concentration decreases. This behavior is opposite to that calculated from the infinitely long charged rod model, which is often used to study counterion condensation. Moreover, we find that, for a specified line charge density, alpha decreases with an increment in chain length and chain flexibility. In fact, the degree of ionization is found to decline with increasing polymer fractal dimension, which can be tuned by varying bending modulus and solvent quality. Those results can be qualitatively explained by a simple model of two-phase approximation.  相似文献   

16.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

17.
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)].  相似文献   

18.
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.  相似文献   

19.
Brownian dynamics simulations were performed to study the structure of polyelectrolyte complexes formed by two flexible, oppositely charged polyelectrolyte chains. The distribution of monomers in the complex as well as the radius of gyration and structure factor of complexes and individual polyelectrolytes are reported. These structural properties were calculated for polyelectrolyte chains with equal number of monomers, keeping constant the bond length of the negative chain and increasing the bond length of the positive chain. This introduces an asymmetry in the length of the chains that modulates the final structure of the complexes. In the symmetric case the distribution of positive and negative monomers in the complex are identical, producing clusters that are locally and globally neutral. Deviations from the symmetric case lead to nonuniform, asymmetric monomer distributions, producing net charge oscillations inside the complex and large changes in the radius of gyration of the complex and individual chains. From the radius of gyration of the polyelectrolyte chains it is shown that the positive chain is much more folded than the negative chain when the chains are asymmetric, which is also confirmed through the scaling behavior of the structure factors.  相似文献   

20.
Molecular-dynamics (MD) simulation results show that polyelectrolyte multilayers deposited from salt free solutions on charged planar surfaces are thermodynamically stable structures that form spontaneously regardless of the method of deposition. The simulation also shows that the polyelectrolyte multilayers are "fuzzy" in nature and molecules in one layer interpenetrate other layers. The influence of chain length, surface charge, and polymer charge is also investigated. Layer thickness was found to be independent of chain length. The ratio of surface to chain charge was found to influence the thickness of the first layer and the amount of polymer absorbed in the first few layers. The thickness of the subsequent layers was found to be independent of the charge ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号