首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let R=GR(4,m) be the Galois ring of cardinality 4m and let T be the Teichmüller system of R. For every map λ of T into { -1,+1} and for every permutation Π of T, we define a map φ λ Π of Rinto { -1,+1} as follows: if xR and if x=a+2b is the 2-adic representation of x with xT and bT, then φ λ Π (x)=λ(a)+2Tr(Π(a)b), where Tr is the trace function of R . For i=1 or i=-1, define D i as the set of x in R such thatφ λ Π =i. We prove the following results: 1) D i is a Hadamard difference set of (R,+). 2) If φ is the Gray map of R into ${\mathbb{F}}_2^{2m}$ , then (D i) is a difference set of ${\mathbb{F}}_2^{2m}$ . 3) The set of D i and the set of φ(D i) obtained for all maps λ and Π, both are one-to-one image of the set of binary Maiorana-McFarland difference sets in a simple way. We also prove that special multiplicative subgroups of R are difference sets of kind D i in the additive group of R. Examples are given by means of morphisms and norm in R.  相似文献   

2.
Fractal functions and interpolation   总被引:1,自引:0,他引:1  
Let a data set {(x i,y i) ∈I×R;i=0,1,?,N} be given, whereI=[x 0,x N]?R. We introduce iterated function systems whose attractorsG are graphs of continuous functionsfIR, which interpolate the data according tof(x i)=y i fori ε {0,1,?,N}. Results are presented on the existence, coding theory, functional equations and moment theory for such fractal interpolation functions. Applications to the approximation of naturally wiggly functions, which may show some kind of geometrical self-similarity under magnification, such as profiles of cloud tops and mountain ranges, are envisaged.  相似文献   

3.
Konrad Engel 《Combinatorica》1984,4(2-3):133-140
LetP be that partially ordered set whose elements are vectors x=(x 1, ...,x n ) withx i ε {0, ...,k} (i=1, ...,n) and in which the order is given byxy iffx i =y i orx i =0 for alli. LetN i (P)={x εP : |{j:x j ≠ 0}|=i}. A subsetF ofP is called an Erdös-Ko-Rado family, if for allx, y εF it holdsxy, x ≯ y, and there exists az εN 1(P) such thatzx andzy. Let ? be the set of all vectorsf=(f 0, ...,f n ) for which there is an Erdös-Ko-Rado familyF inP such that |N i (P) ∩F|=f i (i=0, ...,n) and let 〈?〉 be its convex closure in the (n+1)-dimensional Euclidean space. It is proved that fork≧2 (0, ..., 0) and \(\left( {0,...,0,\overbrace {i - component}^{\left( {\begin{array}{*{20}c} {n - 1} \\ {i - 1} \\ \end{array} } \right)}k^{i - 1} ,0,...,0} \right)\) (i=1, ...,n) are the vertices of 〈?〉.  相似文献   

4.
It is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from thed-dimensional Hardy spaceH p (R×···×R) toL p (R d ) (1/2<p<∞) and is of weak type (H 1 ?i ,L 1) (i=1,…,d), where the Hardy spaceH 1 ?i is defined by a hybrid maximal function. As a consequence, we obtain that the Fejér means of a functionfH 1 ?i ?L(logL) d?1 converge a.e. to the function in question. Moreover, we prove that the Fejér means are uniformly bounded onH p (R×···×R) whenever 1/2<p<∞. Thus, in casefH p (R×···×R) the Fejér means converge tof inH p (R×···×R) norm. The same results are proved for the conjugate Fejér means, too.  相似文献   

5.
Let U be any nontrivial primitive class of partial algebras, i.e. there existsA ∈ U with |A|≥2, and U is closed with respect to homomorphic images (in the weak sense), subalgebras (on closed subsets) and cartesian products of U-algebras, and let U f denote the—also nontrivial and primitive—class of all full U-algebras. Then every U-algebra with at least two elements is a relative algebra of some U f -algebra. For any U-algebraAsetU A =U i εI({i}×(A K i—domf i A )), where (K i) i εI is the type under consideration. Furthermore let F(N, U) denote any U-algebra U-freely generated by some setN (and let F (M, U f ) be similarly defined). Then for every nonempty setM there exists a setN satisfyingM ?N such that there exists a bijective mapping σ:U F(N, U)N ?M satisfying σ((i, α)) ? α(K i ) for all (i, α) ∈U F (N, U), and, for the structureg=(g i)iεI defined by ,g i : =f i F(N, U) ∪ {(α, σ((i, α))) | (i, α ∈U F(N, U)} id M induces an isomorphism betweenF(M, U f ), and (F(N, U)g).  相似文献   

6.
We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. LetS n(F) be the space of alln×n symmetry matrices over a fieldF with 2,3 ∈F *, thenT is an additive injective operator preserving rank-additivity onS n(F) if and only if there exists an invertible matrixU∈M n(F) and an injective field homomorphism ? ofF to itself such thatT(X)=cUX ?UT, ?X=(xij)∈Sn(F) wherecF *,X ?=(?(x ij)). As applications, we determine the additive operators preserving minus-order onS n(F) over the fieldF.  相似文献   

7.
Пустьk-мерное евклид ово пространствоR k рассматривается как подмножествоR n . Зафиксируемр, 1<р<∞ иα >(n?k)/p, α≠п. Как обычно, бесселев потенциалJαf обобщенной функции Шварцаf наR n определяется с помощ ью ее преобразования Фурь е \((\widehat{G_\alpha f})(\xi ) = (2\pi )^{ - n/2} [1 + |\xi |^2 ]^{\alpha /2} f(\xi ), \xi \in R^n .B\) , ξ∈R n . В работе характ еризуются положител ьные весовые функцииw(x 1,...,x k ), которые при продолжении наR n с помощью равенстваw(x 1,...,x k ,...,x n )=w(x 1, ...,x k ) обладают с ледующим свойством: существует числос>0, не зависящее отf, такое, что $$\begin{gathered} \int\limits_{R^k } {|(G_\alpha f)(x_1 ,...,x_k ,0,...,0)w(x_1 ,...,x_k )|^p dx_1 ...dx_k \leqq } \hfill \\ \leqq C\int\limits_{R^n } {|f(x_1 ,...,x_n )w(x_1 ,...,x_n )|^p dx_1 ...dx_n } \hfill \\ \end{gathered} $$   相似文献   

8.
LetR be the reals ≥ 0. LetF be the set of mapsf: {1, 2, ?,n} →R. Choosew ∈ F withw i = w(i) > 0. PutW i = w1 + ? + wi. Givenf ∈ F, define \(\bar f\) F by $$\bar f\left( i \right) = \frac{{\left\{ {w_i f\left( 1 \right) + \ldots + w_i f\left( i \right)} \right\}}}{{W_i }}.$$ Callf mean increasing if \(\bar f\) is increasing. Letf 1, ?, ft be mean decreasing andf t+1,?: ft+u be mean increasing. Put $$k = W_n^u \min \left\{ {w_i^{u - 1} W_i^{t - u} } \right\}.$$ Then $$k\mathop \sum \limits_{i = 1}^n w_i f_1 \left( i \right) \ldots f_{t + u} \left( i \right) \leqslant \mathop \prod \limits_{j = 1}^{t + u} (\mathop \sum \limits_{i = 1}^n w_i f_1 (i)).$$   相似文献   

9.
Let U be the quantum group and f be the Lusztig’s algebra associated with a symmetrizable generalized Cartan matrix. The algebra f can be viewed as the positive part of U. Lusztig introduced some symmetries T i on U for all iI. Since T i (f) is not contained in f, Lusztig considered two subalgebras i f and i f of f for any iI, where i f={xf | T i (x) ∈ f} and \({^{i}\mathbf {f}}=\{x\in \mathbf {f}\,\,|\,\,T^{-1}_{i}(x)\in \mathbf {f}\}\). The restriction of T i on i f is also denoted by \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\). The geometric realization of f and its canonical basis are introduced by Lusztig via some semisimple complexes on the variety consisting of representations of the corresponding quiver. When the generalized Cartan matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s symmetries in the sense of Lusztig. In this paper, we shall generalize this result and give geometric realizations of i f, i f and \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\) by using the language ’quiver with automorphism’ introduced by Lusztig.  相似文献   

10.
We obtain an explicit formula for then-dimensional volumes of certain bodies, calledoddballs hereinafter. An oddball is a bodyG = {x εR n :f(x) ≤ 1}, wheref:R n R is anoddball function. Oddball functions are defined by way of the following construction: We begin with the class of functionsf of the formf(x 1, ...,x k ) = |x 1|α + |x 2|β + ... + |x k|γ. Herek may be any positive integer, and is not fixed. The Greek exponents are arbitrary positive real numbers. We extend this class by permitting any finite number of substitutions among functions in the class. Finally, we extend the substitution-enlarged class by permitting linear formsy i = Σ j b ij x j to replacex i 's, the transformations being nonsingular. Thus, if det(b ij ) ≠ 0, the oddball function $$f(x_1 ,x_2 ,x_3 ,x_4 ,x_5 ,x_6 ) = ((|y_1 |^\alpha + |y_2 |^\beta )^\tau + (|y_3 |^\gamma + |y_4 |^\phi + |y_5 |^\psi )^\delta )^\mu + |y_6 |^\eta $$ is a fairly typical example. We also consider the number of lattice points in certain types of oddballs, as well as their latticepacking densities. Neither do oddballs include thesuperballs discussed elsewhere by this and other authors, nor is every oddball a superball.  相似文献   

11.
We examine the functional-differential equation Δu(x) — div(u(H(x))f (x)) = 0 on a torus which is a generalization of the stationary Fokker-Planck equation. Under sufficiently general assumptions on the vector field f and the map H, we prove the existence of a nontrivial solution. In some cases the subspace of solutions is established to be multidimensional.  相似文献   

12.
What is the most number of vectors inR d such that anyk+1 contain an orthogonal pair? The 24 positive roots of the root systemF 4 inR 4 show that this number could exceeddk.  相似文献   

13.
Letf(X; T 1, ...,T n) be an irreducible polynomial overQ. LetB be the set ofb teZ n such thatf(X;b) is of lesser degree or reducible overQ. Let ?={F j}{F j } j?1 be a Følner sequence inZ n — that is, a sequence of finite nonempty subsetsF j ?Z n such that for eachvteZ n , $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap (F_j + \upsilon )} \right|}}{{\left| {F_j } \right|}} = 1$ Suppose ? satisfies the extra condition that forW a properQ-subvariety ofP n ?A n and ?>0, there is a neighborhoodU ofW(R) in the real topology such that $\mathop {lim sup}\limits_{j \to \infty } \frac{{\left| {F_j \cap U} \right|}}{{\left| {F_j } \right|}}< \varepsilon $ whereZ n is identified withA n (Z). We prove $\mathop {lim}\limits_{j \to \infty } \frac{{\left| {F_j \cap B} \right|}}{{\left| {F_j } \right|}} = 0$ .  相似文献   

14.
Given a non-empty compact set C ?R 3, is C the set of critical points for some smooth proper functionf :R 3R +? In this paper we prove that the answer is “yes” for Antoine’s Necklace and most but not all tame links.  相似文献   

15.
We find a formula that relates the Fourier transform of a radial function on R n with the Fourier transform of the same function defined on R n+2. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function t?f(|t|) and the two-dimensional function (x 1,x 2)?f(|(x 1,x 2)|). We prove analogous results for radial tempered distributions.  相似文献   

16.
Denote by $\hat f$ the (complex) Fourier transform of a functionf which belongs toL 1(R 2). We shall assume thatf is odd inx andy, orf is even inx and odd iny, orf is odd inx and even iny. Among others, we prove that iffL 1(R 2) and (x, y)=(0,0) is a strong Lebesgue point off, then $\left| t \right|\left| v \right|\hat f(t,v)$ tends to 0 as |t|, |v|→∞ in the sense (C;α,β) for allα,β>1.  相似文献   

17.
We study the stationary Focker-Planck equation Δu ? div(u f) = 0 with a given vector field f of the class C 0 (R n ) on the basis of a fixed point principle that generalizes the contraction mapping method. Next, we introduce a parameter in the equation and prove the unique solvability of the equation Δu ? div( f) = 0 with the parameter in the class of positive slowly increasing functions. We reveal the analytic dependence of the positive solution u on the parameter γ. Pointwise estimates for positive solutions are proved.  相似文献   

18.
We will deal with the following problem: Let M be an n×n matrix with real entries. Under which conditions the family of inequalities: x∈? n ;x?0;M·x?0has non–trivial solutions? We will prove that a sufficient condition is given by mi,j+mj,i?0 (1?i,j?n); from this result we will derive an elementary proof of the existence theorem for Variational Inequalities in the framework of Monotone Operators.  相似文献   

19.
Let f(x) denote a system of n nonlinear functions in m variables, mn. Recently, a linearization of f(x) in a box x has been suggested in the form L(x)=Ax+b where A is a real n×m matrix and b is an interval n-dimensional vector. Here, an improved linearization L(x,y)=Ax+By+b, xx, yy is proposed where y is a p-dimensional vector belonging to the interval vector y while A and B are real matrices of appropriate dimensions and b is a real vector. The new linearization can be employed in solving various nonlinear problems: global solution of nonlinear systems, bounding the solution set of underdetermined systems of equations or systems of equalities and inequalities, global optimization. Numerical examples illustrating the superiority of L(x,y)=Ax+By+b over L(x)=Ax+b have been solved for the case where the problem is the global solution of a system of nonlinear equations (n=m).  相似文献   

20.
We generalize earlier results of Fokas and Liu and find all locally analytic (1 + 1)-dimensional evolution equations of order n that admit an N-shock-type solution with Nn + 1. For this, we develop a refinement of the technique from our earlier work, where we completely characterized all (1+1)-dimensional evolution systems u t = F (x, t, u, ?u/?x,..., ?n u/? x n) that are conditionally invariant under a given generalized (Lie-Bäcklund) vector field Q(x, t, u, ?u/?x,..., ?k u/?x k)?/?u under the assumption that the system of ODEs Q = 0 is totally nondegenerate. Every such conditionally invariant evolution system admits a reduction to a system of ODEs in t, thus being a nonlinear counterpart to quasi-exactly solvable models in quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号