首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A validated reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the determination of bergenin in rat plasma. Bergenin in rat plasma was extracted with methanol, which also acted as a deproteinization agent. Chromatographic separation of bergenin was performed on a C(18) column, with a mobile phase of methanol-water (22:78, v/v) at a flow-rate of 0.8 mL/min and an operating temperature of 40 degrees C, and UV detection was set at 220 nm. The calibration curve was linear over the range 0.25-50 microg/mL (r = 0.9990) in rat plasma. The limit of quantification was 0.25 microg/mL using a plasma sample of 100 microL. The extraction recoveries were 83.40 +/- 6.02, 81.49 +/- 2.40 and 72.51 +/- 2.64% at concentrations of 0.5, 5 and 50 microg/mL, respectively. The intra-day and inter-day precision and accuracy were validated by relative standard deviation (RSD%) and relative error (RE%), which were in the ranges 3.74-9.91 and -1.6-8.0%. After intravenous administration to rats at the dose of 11.25 mg/kg, the plasma concentration-time curve of bergenin was best conformed to a two-compartment open model. The main pharmacokinetic parameters indicated that bergenin exhibited a wide distribution and moderate elimination velocity in rat.  相似文献   

2.
A high-performance liquid chromatographic method with UV detection has been developed for the determination of saikosaponin a in rat plasma. Saikosaponin a and internal standard jujuboside A were isolated from plasma samples by solid-phase extraction. The chromatographic separation was achieved on a reversed-phase C(18) column with the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 1 mL/min and UV detection was set at 205 nm. The standard curve for saikosaponin a was linear over the concentration range 0.25-10 microg/mL and the limit of detection was 0.05 microg/mL. The absolute recovery was greater than 82%. The precision and accuracy ranged from 3.05 to 9.59% and 95.61 to 110.00%, respectively. The validated method was used to determine saikosaponin a in plasma samples in a pharmacokinetic study of saikosaponin a administered to Sprague-Dawley rats.  相似文献   

3.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method was described for the determination of chlorogenic acid (CGA) in rat plasma using protocatechuic acid as internal standard (IS). CGA in plasma was extracted with acetonitrile, which also acted as deproteinization agent. Chromatographic separation was performed on a Kromasil C18 column with methanol-0.2 m acetic acid (pH 3.0, 25:75, v/v) as mobile phase at a flow-rate of 1.0 mL/min with an operating temperature of 30 degrees C and UV detection at 300 nm. The standard curve was found to be linear over the concentration ranges of 0.4-2.5 microg/mL and 2.5-40 microg/mL, and the limit of quantification (LOQ) was 0.4 microg/mL. The analytical precision and accuracy were validated by relative standard deviation (RSD) and relative error, which were in ranges 3.14-10.78% and -2.20-5.00%, respectively. The average recovery of CGA was 87.59%. The method was successfully applied to the pharmacokinetic study of CGA in Yin-Huang granules.  相似文献   

4.
In order to research the pharmacokinetics of salvianolic acid A (SalA), a herbal ingredient isolated from Salvia miltiorrhiza Bunge, after intravenous administration to rats, a specific and accurate high-performance liquid chromatography (HPLC) was developed. The assay procedure involved simple liquid-liquid extraction of SalA and internal standard (IS, ethyl-p-hydroxybenzoate) from plasma into ethyl acetate. The organic layer was separated and evaporated under reduced pressure at 40 degrees C. The residue was reconstituted in the mobile phase and analyzed on an Inertsil C8 column, monitored at 285 nm. The mobile phase, which consisted of methanol-acetonitrile-water-formic acid (10:20:70:0.4, by vol), was used at a flow rate of 1.0 mL/min. The ratio of the peak area of the analyte to IS was applied to quantify the plasma samples. The standard curve for SalA was linear (r2 = 0.9999) in the concentration range of 0.75-150 microg/mL. The limit of quantitation (LOQ) of SalA was 0.75 microg/mL. The intra- and inter-day precisions (RSD) of the quality control (QC) samples were in the ranges of 2.17-3.29 and 1.24-5.28%, respectively. Accuracy in the measurement of QC samples ranged from 94.7 to 101.1%. This method was validated for specificity, accuracy and precision and was successfully applied to the pharmacokinetic study of SalA in rat plasma after intravenous administration of Danshen injection.  相似文献   

5.
A sensitive and simple high-performance liquid chromatography method with UV detection was developed and validated for determining picroside II in dog plasma. Paeoniflorin was employed as internal standard and the sample pre-treatment procedure consists of deproteinization by addition of acetonitrile. Chromatographic separations were performed on a Shimadzu VP-ODS column (250 x 4.6 mm i.d., 5 microm). The mobile phase consisted of acetonitrile-0.1% acetic acid aqueous (v/v), 23:77, v/v, at a rate of 1 mL/min. Detection was carried out at a wavelength of 266 nm. Calibration standards ranged from 0.25 to 500 microg/mL in dog plasma and the mean correlation coefficient of 0.9981 was found for the linear calibration curves (n = 6). The limit of quantification (LOQ) was 0.25 microg/mL. Intra- and inter-assay RSD ranged from 0.70 to 7.5%. Accuracy (%bias) ranged from -6.3 to 6.0%. This method was applied to the pharmacokinetic study of picroside II in dogs. The study demonstrated the plasma picroside II concentration-time curves were fitted to the two-compartment open model and showed linear pharmacokinetics.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) method was developed for the first time to simultaneously quantify syringin and chlorogenic acid in rat plasma using wavelength-transfer technology. The analysis was performed on a Diamonsil C(18) column (200 x 4.6 mm i.d., 5 microm particle size) with isocratic mobile phase consisting of acetonitrile-0.05% phosphoric acid (12:88, v/v). The linear ranges were 0.20-10 and 0.25-30 microg/mL, respectively. The lower limits of quantification were 0.20 and 0.25 microg/mL, respectively. The method was shown to be reproducible and reliable with intraday precision below 8.5 and 6.1%, interday precision below 7.1 and 5.5%, accuracy within +/-7.1 and +/-8.6%, and mean extraction recovery excess of 92.1 and 80.9%, respectively, which were all calculated from the blank plasma sample spiked with syringin and chlorogenic acid at three concentrations of 0.20, 1.0 and 6.0 microg/mL for syringin and 0.25, 2.0 and 20 microg/mL for chlorogenic acid. This method was validated for specificity, accuracy and precision and was successfully applied to the pharmacokinetic study of syringin and chlorogenic acid in rat plasma after intravenous administration of Aidi lyophilizer.  相似文献   

7.
A sensitive and simple HPLC method has been developed and validated for the determination of oxyresveratrol (trans-2,4,3',5'-tetrahydroxystilbene, OXY) and resveratrol (trans-3,5,4'-trihydroxystilbene, RES) in rat plasma. The plasma samples were extracted with ethyl acetate and analyzed using HPLC on an Aglient Zorbax SB-C(18) column (250 x 4.6 mm, 5 microm) at a wavelength 320 nm, with a linear gradient of (A) acetonitrile and (B) 0.5% aqueous acetic acid (v/v), at a flow rate of 1.0 mL/min. The method was linear over the range of 0.1265-25.3 microg/mL for OXY and 0.117-23.4 microg/mL for RES. The extraction recovery for OXY, RES and internal standard ranged from 71.1 to 88.3%. The intra- and inter-day precisions were better than 10%, and the accuracy ranged from 89 to 108%. The validated method was used to study the pharmacokinetic profiles of OXY and RES in rat plasma after oral administration of Smilax china root extract.  相似文献   

8.
A simple and rapid high-performance liquid chromatographic method with UV detection is developed and validated to determine the concentration of voriconazole in rat and beagle dog plasma. After protein precipitation using acetonitrile, the supernatant solution is chromatographed on a Diamonsil C(18) column (250 x 4.6-mm i.d., 5 microm). The mobile phase used is a combination of acetonitrile-water-acetic acid (55:45:0.25, v/v/v) with a pH of 4.0. Detection is achieved by a UV detector monitored at a wavelength of 256 nm. The matrix calibration curves are obtained both in the concentration range of 0.10-50.0 microg/mL in rat and beagle dog plasma, with the lower limit of quantitation of 0.10 microg/mL. The intra- and inter-assay precisions in terms of % relative standard deviation are lower than 8.6% and 6.0% in rat and beagle dog plasma, respectively. The accuracy in terms of % relative error ranged from -0.5% to 8.0% and -0.5% to 6.0% in rat and beagle dog plasma, respectively. This validated method is successfully applied to determine the concentration of voriconazole in plasma after intravenous administration of 36 mg/kg voriconazole to rats and 10 mg/kg voriconazole to beagle dogs, respectively.  相似文献   

9.
A simple, sensitive and selective reversed-phase liquid chromatographic assay has been developed and validated for the anti-cancer agent melphalan in perfusate, liver and tumour tissue originating from isolated rat liver perfusion studies. Melphalan was extracted from the matrix using ice-cold methanol. The drug and the internal standard, propylparaben, were detected using ultraviolet absorbance at 262 nm. The assay has been validated in the 0.05-25 microg/mL range for perfusate; the lower limit of quantification (LLQ) is 0.05 microg/mL in perfusate and 0.25 ng/mg in liver and tumour tissues. Accuracies ranged from 89 to 110% and the inter-assay precisions were all below 15% (20% at the LLQ). Melphalan in a biological matrix has to be processed between 0 and 4 degrees C and is stable under all relevant processing and storage conditions tested. The assay has been exhaustively used in isolated liver perfusion studies with the drug demonstrating its applicability.  相似文献   

10.
A simple, accurate, precise and sensitive HPLC-UV method was developed for the determination of secnidazole in human plasma. Secnidazole and tinidazole (IS) were extracted from 0.2 mL of human plasma by ethyl acetate. Secnidazole was then separated by HPLC on a Diamond C(18) column and quantified by ultraviolet detection at 319 nm. The mobile phase consisted of acetonitrile-aqueous 5 mm sodium acetate (30:70, v/v) containing of 0.1% acetic acid adjusted to pH 4.0, and the flow rate was 1.0 mL/min. The low limit of quantification was 0.1 microg/mL. The method was linear over the concentration range 0.1-25.0 microg/mL (R(2) = 1.000). The recovery of secnidazole from human plasma ranged from 76.5 to 89.1%. Inter- and intra-assay precision ranged from 3.3 to 10.7%. Secnidazole in plasma was stable when stored at ambient temperature for 8 h, at -20 degrees C for 2 weeks and at -20 degrees C for three freeze-thaw cycles. The developed method was successfully applied to the pharmacokinetic and bioequivalence studies between test and reference secnidazole tablets following a single 500 mg oral dosage to 20 healthy volunteers of both genders. Pharmacokinetics parameters T(max), C(max), AUC(0-)t, AUC(0-infinity), T(1/2) were determined of both preparations. The analysis of variance (ANOVA) did not show any significant difference between the two preparations and 90% confidence intervals fell within the acceptable range for bioequivalence. It was concluded that the two secnidazole preparations are bioequivalence and may be used interchangeably.  相似文献   

11.
Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis HLB cartridges. Chromatographic separation was achieved by isocratic elution with water-methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (beta-cyclodextrin, 5 microm) column at 30 degrees C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4-8 microg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4-80 microg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 microg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine.  相似文献   

12.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

13.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of rosuvastatin (RST), a novel, synthetic and potent HMG-CoA inhibitor in rat plasma. The assay procedure involved simple liquid-liquid extraction of RST and internal standard (IS, ketoprofen) from a small plasma volume directly into acetonitrile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). Mobile phase consisting of 0.05 m formic acid and acetonitrile (55:45, v/v) was used at a flow rate of 1.0 mL/min for the effective separation of RST and IS. The detection of the analyte peak was achieved by monitoring the eluate using a UV detector set at 240 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of RST and IS were 8.6 and 12.5 min, respectively. The standard curve for RST was linear (r2 > 0.999) in the concentration range 0.02-10 microg/mL. Absolute recoveries of RST and IS were 85-110 and >100%, respectively, from rat plasma. The lower limit of quantification (LLOQ) of RST was 0.02 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.02, 0.06, 1.6 and 8.0 microg/mL, were in the range 7.24-12.43% relative standard deviation (RSD) and 2.28-10.23% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.05-112.17% of the spiked nominal values. Both analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. RST was found to be stable for a period of 30 days on storage at -80 degrees C. The application of the assay to determine the pharmacokinetic disposition after a single oral dose to rats is described.  相似文献   

14.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of osthole in rat plasma and applied to a pharmacokinetic study in rats after administration of Fructus Cnidii extract. After addition of fluocinonide as an internal standard, plasma samples are extracted with diethyl ether. HPLC analysis of the extracts is performed on a Hypersil ODS2 analytical column, using methanol-0.4% acetic acid (65:35, v/v) as the mobile phase. The UV detector is set at 322 nm. The standard curve is linear over the range 0.0520-5.20 microg/mL (r = 0.9979). The mean extraction recoveries of osthole at three concentrations were 81.0%, 91.2%, and 90.7%, respectively. The intra- and interday precisions have relative standard deviations from 1.9% to 4.9%. The limit of quantitation is 0.0520 microg/mL. The HPLC method developed can easily be applied to the determination and pharmacokinetic study of osthole in rat plasma after the animals are given the Fructus Cnidii extract. The plasma concentration of osthole from six rats showed a Cmax of 0.776 +/- 0.069 microg/mL at Tmax of 1.0 +/- 0.3 h.  相似文献   

15.
For pharmacokinetic and toxicokinetic purpose a simple HPLC-UV method has been developed and validated for the estimation of DRF-4848, a novel COX-2 inhibitor in rat plasma. A liquid-liquid extraction was used to extract DRF-4848 and internal standard (IS, DRF-4367) from rat plasma. The analysis was performed on a C(18) column with UV detection at 285 nm. The isocratic mobile phase, 0.01 M potassium dihydrogen ortho phosphate (pH 3.2) and acetonitrile (50:50, v/v) was run at a flow rate of 1 mL/min. The retention times of DRF-4848 and IS were 6.8 and 11.2 min, respectively. Absolute recovery for analyte and IS was >80% from rat plasma. A linear response was observed over a concentration range 0.1-20 microg/mL. The lower limit of quantification (LLOQ) of DRF-4848 was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 1.74-8.70% relative standard deviation (RSD) and 0.75-8.43% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.29-116.51% of the nominal values. Analyte and IS were stable in the battery of stability studies viz., benchtop, autosampler, long-term and freeze/thaw cycles.  相似文献   

16.
A forced degradation study on glibenclamide was performed under conditions of hydrolysis, oxidation, dry heat, and photolysis and a high-performance column liquid chromatographic-ultraviolet (HPLC-UV) method was developed to study degradation behavior of the drug under the forced conditions. The degradation products formed under different forced conditions were characterized through isolation and subsequent infrared/nuclear magnetic resonance/mass spectral analyses, or through HPLC/mass spectrometric (HPLC/MS) studies. The drug degraded in 0.1 M HCI and water at 85 degrees C to a major degradation product, 5-chloro-2-methoxy-N-2-(4-sulfamoylphenyl)ethyl]benzamide (III), and to a minor product, 1-cyclohexyl-3-[[4-(2-aminoethyl)-phenyl]sulfonyl]urea (IV). Upon prolonged heating in the acid, the minor product IV disappeared, resulting in formation of 5-chloro-2-methoxy-benzoic acid (II) and an unidentified product (I). Heating of the drug in 0.1 M NaOH at 85 degrees C yielded II and IV as the major products and I and III as the minor products. The drug and the degradation products formed under different conditions were optimally resolved on a C18 column using ammonium acetate buffer (0.025 M, pH 3.5)-acetonitrile (45 + 55) mobile phase at a flow rate of 0.6 mL/min, with detection at 230 nm. The method was validated for linearity, precision, accuracy, and specificity. Limit of detection (LOD) and limit of quantitation (LOQ) values were also determined. The method could be successfully applied for simultaneous quantification of glibenclamide and the major product, III. The response of the method was linear in a narrow [0.4-10 micro/mL, correlation coefficient (r2) = 0.9982] and a wide (0.4-500 microg/mL, r2 = 0.9993) concentration range for glibenclamide, and in the concentration range of 0.025-50 microg/mL (r2 = 0.9998) for III. The method proved to be precise and accurate for both glibenclamide and III. It was specific for the drug and also selective for each degradation product, and LOQ values for the drug were 0.1 and 0.4 microg/mL, whereas those for III were 0.010 and 0.025 microg/mL, respectively.  相似文献   

17.
高效液相色谱法测定大鼠血浆中的原儿茶酸   总被引:3,自引:0,他引:3  
《色谱》2007,25(2):207-210
建立了大鼠血浆中原儿茶酸含量测定的高效液相色谱方法。采用的色谱柱为DiamondsilTM C18 柱(150 mm×4.6 mm,5 μm);流动相为乙腈-水(体积比为9∶91,用H3PO4 调pH至2.5);流速1.2 mL/min;检测波长260 nm;内标为对羟基苯甲酸。原儿茶酸的线性范围为0.050~3.20 mg/L,线性相关系数为0.9978,最低定量限为0.050 mg/L,日内和日间测定的精密度(以相对标准偏差表示)均低于7.0%,准确度(以相对误差表示)为-1.4%~2.6%;在0.050,0.40,3.20 mg/L低、中、高3个添加浓度水平下,血浆样品的提取回收率分别为83.4%,87.3%,91.1%。该方法简便,灵敏,准确,适用于大鼠体内原儿茶酸的药物动力学研究。  相似文献   

18.
Lv J  Pan L  Ye Y  Zhou Y 《Journal of separation science》2007,30(15):2466-2472
A sensitive and selective HPLC method with UV detection for the simultaneous determination of picroside-I and picroside-II (active components of total glycoside of Picrorhiza scrophulariiflora Pennell) was developed and validated in rat plasma. After simple deproteinization using acetonitrile, analysis was performed on an RP-C18 column (250 mm x 4.6 mm id, 5 microm) with a mobile phase consisting of acetonitrile and water at a flow rate of 1.0 mL/min used in a gradient elution program. The UV detection wavelength was set at 262 and 277 nm. Linear calibration curves were obtained in the concentration range of 0.10-50 microg/mL for picroside-I and 0.25-200 microg/mL for picroside-II. The lower limits of quantification were 0.1 and 0.25 microg/mL for picroside-I and picroside-II, respectively. The recoveries from spiked control samples were up to 80% for both picroside-I and picroside-II. Accuracy and precision of the validated method were both within the acceptable limits of <15% at three quality control concentrations. The analytes were stable after three freeze-thaw cycles. The method was successfully used to determine concentrations of picroside-I and picroside-II after intravenous administration of total glycoside of Picrorhiza scrophulariiflora Pennell to rats.  相似文献   

19.
Cefuroxime axetil is the esterified form of cefuroxime, injectable second generation cephalosporine antibiotic that can be given orally. Stereo and structural isomers of cefuroxime axetil (CA), anti-cefuroxime axetil (ACA) and Delta(3)-cefuroxime axetil (DCA), can be present in cefuroxime dosage forms as the process related impurities as well as possible degradation product. Sensitive and precise reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the determination of cefuroxime axetil in the presence of its degradation products in solid dosage forms. The RSD values for cefuroxime axetil, anti-cefuroxime axetil and Delta(3)-cefuroxime axetil of 1.80, 1.99 and 2.48%, respectively, indicated a good precision of the RP-HPLC method. Developed RP-HPLC method was sensitive with LOD = 0.08 microg mL(-1) and LOQ = 0.60 microg mL(-1) for anti-cefuroxime axetil and LOD = 0.06 microg mL(-1) and LOQ = 0.45 microg mL(-1) for Delta(3)-cefuroxime axetil. Holding studies were carried out on Ceroxim tablets, according to ICH regulation at 30 degrees C/60% relative humidity (RH) and 40 degrees C/75% RH for 1, 2, 3 and 6 months. The review data from the stability studies conducted, show the significant content change of Delta(3)-cefuroxime axetil.  相似文献   

20.
E7070 (indisulam) is a novel anticancer drug currently undergoing clinical investigation. We present a sensitive and specific method for the quantitative determination of E7070 and its metabolite M1 (1,4-benzenedisulphonamide) in human plasma, urine and faeces. The analytes and their tetra-deuterated analogues, which were used as internal standards, were isolated from the biological matrix by solid-phase extraction with OASIS cartridges (0.5 mL plasma or 1 mL urine) and by liquid-liquid extraction with ethyl acetate at pH 5 (1 mL faecal homogenate). The analytes were separated on a C8 reversed-phase chromatographic column and analyzed using electrospray ionization and tandem mass spectrometric detection in the negative ion mode. The validated concentration ranges in plasma were 0.1-20 microg/mL for E7070 and 0.01-2 microg/mL for M1. In urine and faecal homogenate, a concentration range from 0.05-10 microg/mL or microg/g, respectively, was validated for both analytes. Validation of the plasma assay was performed according to the most recent FDA guidelines. The assay fulfilled all generally accepted requirements for linearity (r > 0.99, residuals between -8 and 10%), accuracy (-13.5 to 1.4%) and precision (all less than 11%) in the tested matrices. We investigated recovery, stability (working solutions at -20 degrees C and at room temperature, biological matrices at -20 degrees C, room temperature and after 3 freeze/thaw cycles; final extracts at room temperature) and robustness. All these parameters were found acceptable. This method is suited for mass balance studies or therapeutic drug monitoring, as demonstrated by a case example showing plasma concentrations and cumulative excretion of E7070 and M1 in urine and faeces. Furthermore, we show the presence of E7070 metabolites in patient urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号