首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertically aligned ZnO nanowires have been successfully synthesized on c-cut sapphire substrates by a catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD) in Ar and N2 background gases. In NAPLD, the nanoparticles formed in the background gas by laser ablation are used for the growth of the nanowires. The surface density of the nanowires can be controlled by varying the density of nanoparticles, which is in turn achieved by varying ablation laser parameters such as the energy and the repetition rate. When single ZnO nanowire synthesized in a N2 background gas was excited by 355 nm laser-pulse with a pulse-width of 8 ns, stimulated emission was clearly observed, indicating high quality of the nanowire.  相似文献   

2.
Vertically aligned ZnO nanowires were successfully grown on the sapphire substrate by nanoparticle-assisted pulsed laser deposition (NAPLD), which were employed in fabricating the ZnO nanowire-based heterojunction structures. p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-GaN:Mg film/ZnO nanowire/n-ZnO film structures. The current–voltage measurements showed a typical diode characteristic with a threshold voltage of about 2.5 V. Electroluminescence (EL) emission having the wavelength of about 380 nm was observed under forward bias in the heterojunction diodes and was intensified by increasing the applied voltage up to 30 V.  相似文献   

3.
SnO2/ZnO hierarchical nanostructures were synthesized by a two-step carbon assisted thermal evaporation method. SnO2 nanowires were synthesized in the first step and were then used as substrates for the following growth of ZnO nanowires in the second step. Sn metal droplets were formed at the surfaces of the SnO2 nanowires during the second step and were acted as catalyst to facilitate the growth of ZnO nanowires via vapor-liquid-solid mechanism. Room temperature photoluminescence measurements showed that the SnO2/ZnO hierarchical nanostructures exhibited a strong green emission centered at about 520 nm and a weak emission centered at about 380 nm. The emissions from the SnO2 were drastically constrained due to screen effect caused by the ZnO layer.  相似文献   

4.
Not only vertically aligned ZnO nanowires but also horizontally aligned ZnO nanowires have been successfully grown on the annealed (0 0 0 1) c-cut and (1 1 2 0) a-cut sapphire substrates, respectively using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The as-synthesized ZnO nanowires exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature. The single ZnO nanowire was collected in the electrode gap by dielectrophoresis (DEP). Under the optical pumping, the single ZnO nanowire exhibited UV emission at around 390 nm with several sharp peaks whose energy spacings are almost constant, which greatly differs from the broad UV emission of the film with many nanowires, suggesting ZnO nanowires as candidates for laser media. The single ZnO nanowire showed polarized photoluminescence (PL). The as-synthesized ZnO nanowires could find many interesting applications in short-wavelength light-emitting diode (LED), laser diode and gas sensor.  相似文献   

5.
Single-crystalline zinc oxide (ZnO) nanowires were synthesized from zinc powder and H2O through a simple chemical route at 730 °C in Ar atmosphere. The potential exists for bulk synthesis of ZnO nanowires at temperatures significantly less than the 200–300 °C of thermal evaporation methods reported formerly. Scanning electron microscopy and transmission electron microscopy observations reveal that the ZnO nanowires are structurally uniform, have lengths up to several hundreds of micrometers and diameters of about 40–60 nm and crystallize in a hexagonal structure. The growth of ZnO nanowires is controlled by the vapor–solid crystal-growth mechanism. Photoluminescence measurements show that the ZnO nanowires have a strong near-band ultraviolet emission at 380 nm and a green light emission at 520 nm caused by oxygen vacancies. PACS 81.05.Ys; 78.55.Et  相似文献   

6.
Single crystal ZnO nanowires diffused with europium (Eu) from a solid source at 900 °C for 1 h or doped with Eu during growth have been characterized. The ZnO nanowires were grown by chemical vapor deposition on Si substrates employing Au as a catalyst. The diameter of the resulting nanowires was 200 nm with a length of 1 μm. Photoluminescence spectra excited by a He–Cd laser at room temperature showed the green luminescence at 515 nm in Eu-diffused nanowires. A small red shift of near-band-edge emission of ZnO nanowires was observed in the diffused wires, but sharp emission from Eu3 ions was not present. Transmission electron microscopy shows crystalline Eu2O3 formation on the diffused nanowire surface, which forms a coaxial heterostructure system. When Eu was incorporated during the nanowire growth, the sharp 5DO7F2 transition of the Eu3+ ion at around 615 nm was observed.  相似文献   

7.
Zinc oxide/erbium oxide core/shell nanowires are of great potential value to optoelectronics because of the possible demonstration of laser emission in the 1.5 μm range. In this paper we present a convenient technique to obtain structures of this composition. ZnO core nanowires were first obtained by a vapor–liquid–solid (VLS) method using gold as a catalyst. ZnO nanowires ranging from 50 to 100 nm in width were grown on the substrates. Erbium was incorporated into these nanowires by their exposure to Er(tmhd)3 at elevated temperatures. After annealing at 700 C in air, the nanowires presented 1.54 μm emission when excited by any of the lines of an Ar+ laser. An investigation of nanowire structure by HRTEM indicates that indeed the cores consist of hexagonal ZnO grown in the 001 direction while the surface contains randomly oriented Er2O3 nanoparticles. EXAFS analysis reveals that the Er atoms possess a sixfold oxygen coordination environment, almost identical to that of Er2O3. Taken collectively, these data suggest that the overall architectures of these nanowires are discrete layered ZnO/ Er2O3 core/shell structures whereby erbium atoms are not incorporated into the ZnO core geometry.  相似文献   

8.
The paper deals with synthesis of Sb doped ZnO nanowire by considering Si coated with Sb and Au as substrate using carbothermal evaporation method. The horizontally oriented Sb doped ZnO nanowires with a diameter of 1 μm synthesized at 900 °C, which is quite high as compared to the Pure ZnO nanowires generated without the influence of Sb at 900 °C. The nanowire synthesized at 900 °C showed a measurable lower angle of about 0.06° from XRD and suppression of A1T and E1(L0) modes in Raman spectroscopic, this confirms the incorporation of Sb in ZnO lattice. The strong exciton emission and weak deep-level emission from room temperature PL and Strong emission attributed to the radiant recombination from neutral-acceptor-bound exciton (A0X) peak accompanied by two strong and broad emission of donor acceptor pair (DAP) from low temperature PL, this confirms the use of Sb as an acceptor for ZnO.  相似文献   

9.
Zinc oxide (ZnO) nanowires (NWs) have been synthesized using zinc nitrate and hexamethylenetetramine by templateless, surfactant-free and seedless aqueous solution route. The morphology of ZnO NWs was considerably affected by growth time: a longer reaction time results in the formation of ZnO NWs. Structural analysis of the synthesized NWs showed an average diameter of 20–30 nm length of several micrometers and single-crystalline wurtzite hexagonal structure. Photoluminescence studies of ZnO NWs showed a strong green emission peak at 585 nm.  相似文献   

10.
Single crystal ZnO nanowires with lengths and diameters ranging from 2 to 30 μm and 100 to 300 nm, respectively, have been grown by the vapor transport method on SiO2/Si substrates using Au as catalyst. Their Raman and emission properties under different excitation wavelengths have been studied at the nanoscale. Whereas Raman measurements on nanowires corroborate the well-known ZnO phonon characteristics, their photoluminescence spectra exhibit a very broad emission band, mainly in the visible region from 450 to 800 nm, which corresponds to different defect-related recombination processes. Spectrally resolved scanning near-field optical microscopy, SNOM, of single ZnO nanowires have also been performed for a direct imaging of the photoluminescence emission with high spatial resolution below 100 nm, establishing a relationship with the simultaneously acquired topography.  相似文献   

11.
ZnO nanoparticles, nanowires, and nanowalls were synthesized rapidly on Si via thermal decomposition of zinc acetate by a modified chemical vapor deposition at a low substrate temperature of 200–250°C for the first time. The diameters of the synthesized nanoparticles and nanowires are around 100 and 30 nm, respectively, and the thickness of nanowalls is around 20 nm. High-resolution transmission electron microscopy shows that the nanowires as well as nanowalls are single-crystalline, and the nanoparticles are highly-textured poly-crystalline structures. Room-temperature photoluminescence spectra of the nanostructures show strong ultraviolet emissions centered at 368–383 nm and weak violet emissions at around 425 nm, indicating good crystal quality. The study provides a simple and efficient route to synthesize ZnO diverse nanostructures at low temperature.  相似文献   

12.
ZnO–SnO2 branch–stem nanostructures were realized on a basis of a two-step process. In step 1, SnO2-stem nanowires were synthesized. In step 2, ZnO-branch nanowires were successfully grown on the SnO2-stem nanowires through a simple evaporation technique. We have pre-deposited thin Au layers on the surface of SnO2 nanowire stems and subsequently evaporated Zn powders on the nanowires. The ZnO branches, which sprouted from the SnO2 stems, had diameters in a range of 30–35 nm. As-synthesized branches were of single crystalline hexagonal ZnO structures. Since the branch tips were comprised of Au-containing nanoparticles, the Au-catalyzed vapor–liquid–solid growth mechanism was more likely to control the growth process of the ZnO branches. To test a potential use of ZnO–SnO2 branch–stem nanostructures in chemical gas sensors, their sensing performances with respect to NO2 gas were investigated, showing the promising potential in chemical gas sensors.  相似文献   

13.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

14.
Dy-doped ZnO nanowires have been prepared using high-temperature and high-pressure pulsed-laser deposition. The morphology, structure, and composition of the as-prepared nanostructures are characterized by field emission scanning electron microscopy, X-ray diffraction, Raman scattering spectrometry, X-ray photoelectron spectrometry, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The alloying droplets are located at the top of the as-prepared Dy-doped ZnO nanowires, which means that the growth of the Dy-doped ZnO nanowires is a typical vapor-liquid-solid process. The luminescence properties of Dy-doped ZnO nanowires are characterized by cathodoluminescence spectra and photoluminescence spectra at low temperature (8 K). Two peaks at 481 and 583 nm, respectively, are identified to be from the doped Dy3+ ions in the CL spectra of Dy-doped ZnO nanowires.  相似文献   

15.
2D planar field emission devices based on individual ZnO nanowires were achieved on Si/SiO2 substrate via a standard e-beam lithography method. The anode, cathode and ZnO nanowires were on the same substrate; so the electron field emission is changed to 2D. Using e-beam lithography, the emitter (cathode) to anode distance could be precisely controlled. Real time, in situ observation of the planar field emission was realized in a scanning electron microscope. For individual ZnO nanowires, an onset voltage of 200 V was obtained at 1 nA. This innovative approach provides a viable and practical methodology to directly implement into the integrated field emission electrical devices for achieving “on-chip” fabrication.  相似文献   

16.
ZnO nanowires were synthesized in a short time of a few seconds through a simple thermal evaporation of Zn powder using solar energy under air atmosphere. The Zn powder was heated by focusing sunlight on the Zn powder employing a magnifying lens. This strategy heated Zn to its evaporation temperature resulting in its oxidation in air. This procedure formed ZnO nanowires of ∼10 nm diameter and ∼2 μm length. As only Zn powder without any catalysts was used as the source material, it is suggested that the growth of the nanowires occurs through a vapor-solid mechanism. The cathodoluminescence (CL) spectrum from such ZnO nanowires showed strong ultraviolet emission indicating their highly crystalline quality besides good optical properties.  相似文献   

17.
Ultralong ZnO nanowires were successfully synthesized by a simple hydrothermal reaction of Zn foil and aqueous Na2C2O4 solution at 140°C. The as-synthesized ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0001] direction. The role of Na2C2O4 in the formation of ultralong ZnO nanowires was investigated, and a possible mechanism was also proposed to account for the formation of the ultralong ZnO nanowires. The gas sensor fabricated on the basis of the ultralong ZnO nanowires showed excellent response characteristics towards NH3 and N(C2H5)3 vapors with low concentration, and its detection limits for NH3 and N(C2H5)3 are about 0.2 and 0.15 ppm at the working temperature of 180°C, respectively. This result suggests potential applications of the ultralong ZnO nanowires in monitoring flammable, toxic and corrosive gases.  相似文献   

18.
ZnO of different morphologies with controlled size and aspect ratio (l/d) such as dumbbell-like microrods, thick nanowires and thin nanowires were prepared by a hydrothermal method. Possible mechanisms for the formation of ZnO crystals with the different morphologies were discussed. Strong violet photoluminescence bands at~413 nm (3.0 eV) without band edge emission were observed from the dumbbell-like ZnO microrods and thick nanowires. Correspondingly, the thin nanowires showed a weak shoulder UV photoluminescence band at~390 nm. Such result indicates that the photoluminescence properties could be improved by the morphologies or aspect ratio (l/d) and the potential fabrication violet-light-emitting devices.  相似文献   

19.
The morphology and photoluminescence properties of ZnO nanostructures synthesized from deferent zinc sources by a vapor deposition process were investigated. The zinc sources involved pure zinc, ZnO, and ZnCO3 powders, respectively. It was found that the zinc sources have a strong effect on the morphology of the ZnO nanostructures. For the pure zinc and ZnO sources, uniform ZnO nanowires and tetrapods are obtained, respectively. However, in the case of the ZnCO3 source, the products are nanowire–tetrapod combined nanostructures, in which ZnO nanowires grow from the ends of tetrapod arms. The morphology differences of these products may be mainly concerned with the yield and constituents of the corresponding zinc vapor. Photoluminescence measurements show that the nanowires have a relatively stronger near-band UV emission than the other products. The strongest green-light emission from the tetrapods implies that more defects exist in the tetrapods. An evident peak at 430 nm is found in the spectrum of the nanowire–tetrapod combined nanostructures, which may be caused by oxygen-depletion interface traps. PACS 73.61.Tm; 81.10.Bk; 78.55.Et  相似文献   

20.
The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples were composed of MoO2 nanowires formed over a thin layer of crystalline Mo4O11. TEM observation revealed that these nanowires have some nanoscale protrusion on their surface. These nanoprotrusions resulted in enhancement of field-emission properties of nanowires comprising nanoprotrusions. The turn-on emission field and the enhancement factor of this type of nanostructures were measured 0.2 V/μm and 42991 at the vacuum gap of 300 μm, respectively. These excellent emission properties are attributed to the special structure of the nanowires that have potential for utilizing in vacuum nanoelectronic and microelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号