首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— Photolysis at 254 nm of alkyl benzohydroxamates [C, H, CONHOR: R = CH3 H2CH3 CH(CH3)2, CH2C6H5 CH(CH3)C2H5 CH(CH3)- n -C6H13] in acetonitrile or hydrocarbon solvents gives benzamide. These reactions can be sensitized by benzophenone (at ca. 350 nm) and are quenched by cis-piperylene. Racemization occurred when 2-octyl (+)-benzohydroxamate was irradiated in cyclohexane. These results are consistent with a mechanism involving a triplet biradical. Photolysis of phenyl benzohydroxamate [C6H5CONHOC6H5] and benzyl N -methylbenzohydroxamate [C6H5CON-(CH3)OCH2Q6H5] cannot be quenched with ris-piperylene and appear to be singlet reactions.  相似文献   

2.
Abstract— An investigation has been made of the reaction between methylene, formed by the photolysis of ketene, and hydrogen. Ethane, ethylene and methane are the major hydrocarbon products, and it has been shown that the formation of these products may be adequately described by the sequence of processes
CH2CO + hv → CH2+ CO (1)
CH2+ H2→ CH3+H (2)
2CH3→ C2H6 (3)
CH3+ H2+ CH4+ H (4)
CH2+ CH2CO → C2H4+ CO (7)
In particular, the relative rates of ethane and methane formation are consistent with the known rate constants for reactions (3) and (4), and it is not therefore necessary to postulate the participation of an 'insertion' process
CH2+ H2→ CH4 (6) to account for the formation of methane.
Decrease of the energy possessed by the methylene, either by increase of the wavelength of ketene photolysis, or by increase of gas pressure, is shown to result in an increase in the reactivity of the methylene towards ketene relative to its reactivity towards hydrogen (i.e. the ratio k2/k2 increases).  相似文献   

3.
Abstract— Absorption, fluorescence and phosphorescence spectra as well as fluorescence and phosphorescence quantum yields of 8-X-5-deazaflavins (X = C1, NO2, p -NO2-C6H4, N(CH3)2, NH2, p -NH2-C6H4, p -N(CH3)2-C6H4-N=N) were determined. It was found that all these data are highly influenced by the substituent at position 8 of the 5-deazaisoalloxazine skeleton. Also the photoreduction of 8-X-5-deazaflavins in the presence of electron donors was studied. It was established that the photoreduction leads to the formation of a 5,5'-dimer and/or a 6,7-dihydro compound. Reduction of the C(6)-C(7) bond is promoted by strong electron-donating substituents and bulky electron donors. 5-Deazaftavins with a reducible substituent at position 8 exhibit reduction of the substituent prior to the reduction of the 5-deazaisoalloxazine skeleton.  相似文献   

4.
Abstract— The photodecomposition of sulfanilamide, 4-aminobenzoic acid and related analogs in aqueous solution has been studied with the aid of spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and CH3NO2 as well as by direct electron spin resonance techniques. The NH2 radical was trapped by DMPO during the photolysis of aqueous solutions of sulfanilamide with a Xe arc lamp. Studies with [15N1]-sulfanilamide indicated that the NH2 radical was generated by homolytic fission of the sulfur-nitrogen bond. Under the same conditions DMPO trapped the H and SO3 radicals during photolysis of sulfanic acid. Direct photolysis of sulfanilamide, sulfanilic acid and Na2SO3 in the absence of any spin trap yielded the SO3 radical. Photolysis of 4-aminobenzoic acid at pH 7 gave the H radical which was trapped by DMPO. At low pH values OH and C6H4COOH radicals were generated during the photolysis of 4-aminobenzoic acid. No eaq were trapped by CH3NO2 when acid (pH 4) and neutral aqueous solutions of sulfanilamide or 4-aminobenzoic acid were photoirradiated. The mechanism of formation of known photoproducts from the free radicals generated by sulfanilamide and 4-aminobenzoic acid during irradiation are discussed. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

5.
Abstract— The photoreduction of methylene blue in the presence of arylaminomethanesulfonates (RAMS = RC6H4NHCH2SO3Na) was studied by laser and conventional flash photolysis. These compounds quenched the methylene blue triplet deviating from a normal Stern-Volmer behaviour. For low quencher concentrations, a Rehm-Weller relationship was found between the k q's and the DL G 's obtained for the electron transfer reactions. The lack of further quenching at higher [RAMS] is ascribed to the formation of a ground state ion pair between the dye and the anionic quencher which, on excitation, forms a triplet state unable to under go electron transfer for steric reasons. A second order decay rate constant was found for the semireduced species (MB') ( ca. 5 × 109 M -1 s-1, independent of the RAMS used) and is attributed to a proton transfer from the radical zwitterion (RC6H4NH CH2SO3) to MB. The overall dependence on the substituent of the bleaching observed by continuous irradiation follows the triplet behaviour.  相似文献   

6.
Abstract— Ethanol and ethanol-water matrices were exposed to X-rays at 77K and the photochemistry and paths of radical conversion were investigated by EPR methods. The main X-ray induced radical, CH3ĊHOH, is probably photoionized by 254 nm light. The following radicals are produced during prolonged UV-irradiation of CH3ĊHOH radicals: ĊH3, ĊHO, H and 2 types of radicals giving singlet EPR spectra. One of these radicals (d) is bleachable with 580 nm light, ĊH3 and ĊH3ĊHOH being formed during the bleaching, the other one (e) is unbleachable and the most stable radical in the matrix during annealing. The CH3 radicals decay at 77 K (τ∽ 10 min) and produce CH3-CHOH radicals and the unbleachable radical (e). Stable H-atom signals were seen in X-irradiated ethanol-water mixtures (volume ratio 2:1) at 77 K. The H-atom signals increased during photobleaching of the trapped electrons in the matrix and during UV-photolysis of CH3CHOH radicals.  相似文献   

7.
The photodecomposition of sulfanilamide (4-aminobenzenesulfonamide), sulfacetamide. sulfathiazole. sulfadiazine, carbutamide and tolbutamide has been studied using the spin traps 2-methyl-2-nitrosopropanc and 5,5-dimethyl-l-pyrroline-l-oxide. The following radicals were trapped during the photolysis of sulfanilamide in aqueous solution: H' and HNC6H4SO2NH, (α-fission). SO2NH2 and C6H4NH2 (δ fission). H2NC6H4SO2 and NH2 (δ-fission). Although the C.,H4SO2NH2 and the SO; radicals were also detected these were not formed directly by homolytic bond fission. Homolytic bond fission was also observed during the irradiation of sulfacetamide (α.δ), sulfadiazine (α). carbutamide (α,δ) and tolbutamide (δ). All of the analogs, with the exception of tolbutamide, generated the SO; radical. Sulfacetamide, sulfadiazine and carbutamide generated the C6H4SO2;NHR radical by some process that did not involve homolytic bond fission. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

8.
Abstract. The quantum yields of HCI (φHC1) formation have been measured for the photolysis of N -methyldiphenylamine (MeDPA), triphenylamine (TPA) and diphenylamine (DPA) in the presence of CCl4 in polar solvents. The quantum yields of N-methylcarbazole formation (φmφca) have also been determined for the system MeDPA-CCl4. With increasing CCl4 concentration, φHCl increases as φMeCA decreases, and φHCl reaches maximum values 2.7 at 1 M CCl4. Using laser photolysis, transient spectra have been recorded for MeDPA in the absence and presence of CCl4 in polar and non-polar solvents, and for TPA. Transient absorption due to the triplet states and photocyclization products (without CCU), exciplexes, the (C6H5)2 NCHi radical, the MeDPA+ cation radical, the (TPA+., CCl4) ion pair, and the TPA+ cation radical have been identified. The mechanistic implications of these results are discussed.  相似文献   

9.
Abstract— -Three phthalocyanine dyes HOSiPcOSi(CH3)2(CH2)3N(CH3)2 (Pc 4), HOSiPc-OSi(CH3)2(CH2)3N+(CH3)3I- (Pc 5) and aluminum tetrasulfophthalocyanine hydroxide (AlOHPcS4) were evaluated for their ability to inactivate the trypomastigote form of Trypanosoma cruzi in fresh frozen plasma (FFP) and red blood cell concentrates (RBCC). The compound Pc 4 was found to be highly effective in killing T. cruzi, Pc 5 less effective and AlOHPcS4 ineffective. With FFP as the medium, a complete loss of parasite infectivity in vitro (≥5 log10) was found to occur with 2 μ M Pc 4 after irradiation with red light (>600 nm) at a fiuence of 7.5 J/cm2, while with RBCC as the medium, a complete loss was found to occur at a fiuence of 15 J/cm2. Even without illumination, Pc 4 at 2 μ M also killed about 3.7-4.1 log10 of T. cruzi in FFP during 30 min. Observed differences in T. cruzi killing by the various phthalocyanines may relate to differences in binding; Pc 4 binds to the parasites about twice as much as Pc 5. Ultrastructural analysis of treated parasites suggests that mitochondria are a primary target of this photodynamic treatment. The data indicate that Pc 4 combined with exposure to red light could be used to eliminate bloodborne T. cruzi parasites from blood components intended for transfusion. The inactivation of T. cruzi by Pc 4 in the dark suggests a possible therapeutic application.  相似文献   

10.
Abstract— The photolysis (Δ < 220 nm) of thymidine-5'-monophosphate was studied by electron-spin resonance (ESR) in acidic and alkaline phases. In both cases, the H–addition radical at the C6 position is detected at 77°K. At 225°K, a triplet 1:2:1 is observed, which suggests a H abstraction radical from the CH3 group. When oxygen is present during irradiation, a peroxide–type radical is observed, which results partly from a reaction like R + O2→ ROO and partly from an energy transfer from thymidine-5'-monophosphate to oxygen, probably in the 1π0 state.  相似文献   

11.
Abstract— Photodynamic therapy (PDT) of cancer is a modality that relies upon the irradiation of tumors with visible light following selective uptake of a photosensitizer by the tumor tissue. There is considerable emphasis to define new photosensitizers suitable for PDT of cancer. In this study we evaluated six phthalocyanines (Pc) for their photodynamic effects utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Of the newly synthesized Pc, two showed significant destruction of cytochrome P-450 and monooxygenase activities, and enhancement of lipid peroxidation, when added to microsomal suspension followed by irradiation with ∼ 675 nm light. These two Pc named SiPc IV (HOSiPcOSi[CH3]2[CH2]3N[CH3]2) and SiPc V (HOSiPcOSi[CH3]2[CH2]3N[CH3]31 I) showed dose-dependent photodestruction of cytochrome P-450 and monooxygenase activities in liver microsomes, and photoenhancement of lipid peroxidation, lipid hydroperoxide formation and lipid fluorescence in rnicrosomes and erythrocyte ghosts. Compared to chloroaluminum phthalocyanine tetrasulfonate, SiPc IV and SiPc V produced far more pronounced photodynamic effects. Sodium azide, histidine, and 2,5-dimethylfuran, the quenchers of singlet oxygen, afforded highly significant protection against SiPc IV- and SiPc V-mediated photodynamic effects. However, to a lesser extent, the quenchers of superoxide anion, hydrogen peroxide and hydroxyl radical also showed some protective effects. These results suggest that SiPc IV and SiPc V may be promising photosensitizers for the PDT of cancer.  相似文献   

12.
Abstract— Porous Vycor glass samples containing adsorbed molecules were illuminated at 77 K by a mercury lamp jacketed by a filter cutting off wavelengths below 250 nm. Oxygen or carbon dioxide on Vycor produces an asymmetric electron paramagnetic resonance (EPR) signal best described as holes trapped in the glass. Methyl bromide produces an identical EPR signal plus four other lines due to methyl radicals. Evidence is presented that the products result from excitonic energy transfer from the Vycor to the adsorbed materials. Triphenylamine (TPA) adsorbed on Vycor can also be photoionized by similar illumination, and the cation radical TPA+ can be stabilized at 77 K if an electron acceptor is also adsorbed. Attachment of the photoejected electron by carbon dioxide forms CO2-, and that by methyl bromide leads to methyl radicals. The CH3 radical yield is dependent on the surface separation between the electron donor (TPA) and the acceptor (CH3Br). By monitoring the relative quantum yield of the methyl radicals as a function of distance separating the TPA and CH3Br, it is shown that the photoelectron is capable of migrating on the Vycor glass surface.  相似文献   

13.
Abstract— In aqueous solutions α-hydroxyalkylperoxyl radicals undergo a spontaneous and a base catalysed HO2 elimination. From kinetic deuterium isotope effects, temperature dependence, and the influence of solvent polarity it was concluded that the spontaneous reaction occurs via an HO2 elimination followed by the dissociation of the latter into H+ and O2-. The rate constant of the spontaneous HO2 elimination increases with increasing methyl substitution in α-position ( k (CH2(OH)O2) < 10s-1 k (CH3CH(OH)O2) = 52s-1 k ((CH3)2C(OH)O2) = 665 s-1). The OH- catalysed reaction is somewhat below diffusion controlled. The mixture of peroxyl radicals derived from polyhydric alcohols eliminate HO2 at two different rates. Possible reasons for this behaviour are discussed. The mixture of the six peroxyl radicals derived from d -glucose are observed to eliminate HO2 with at least three different rates. The fastest rate is attributed to the HO2 elimination from the peroxyl radical at C-l ( k > 7000s-1). Because of the HO2 eliminations the peroxyl radicals derived from d -glucose do not undergo a chain reaction in contrast to peroxyl radicals not containing an α-OH group. In competition with the first order elimination reactions the α-hydroxylalkylperoxyl radicals undergo a bimolecular decay. These reactions are briefly discussed.  相似文献   

14.
Abstract— Laser flash photolysis of trans -[Rh(dppe)2X2][PF6] (X=Br and I; dppe=bis(diphenylphosphino)ethane) in CH2Cl2 or CH3CN produces the d7 Rh(II) radicals, [Rh(dppe)2X]+, and halogen atoms. The kinetics of the disappearance of [Rh(dppe)2X]+ radicals in CH2Cl2 or CH3CN were mixed order: H-atom abstraction from solvent to produce the rhodium hydrides, [RhH(dppe)2X][PF6], and Rh/X recombination. In the poor H-atom donor solvent, benzonitrile, Rh/Br recombination was observed to be uncomplicated by competing H-atom abstraction. The hydride complexes [RhH(dppe)2X][PF6], formed by H-atom abstraction were completely characterized by 31P{1H}-NMR, 1H-NMR, and mass specrometry. Cyclohexene was used as an effective trap for photogenerated Br atoms and yielded bromocyclohexane and 3-bromocyclohexene in a relative yield, 1:9. The photochemical mechanism is discussed in light of the transient absorbance and trapping studies.  相似文献   

15.
Lamotrigine (LTG) [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine], an anticonvulsant and antidepressant drug Lamictal®, produces a (photo)toxic response in some patients. LTG absorbs UV light, generating singlet oxygen (1O2) with a quantum yield of 0.22 in CH2Cl2, 0.11 in MeCN and 0.01 in D2O. A small production of superoxide radical anion was also detected in acetonitrile. Thus, LTG is a moderate photosensitizer producing phototoxicity and oxidizing linoleic acid. LTG is a weak 1O2 quencher ( k q = 3.2 × 105  m −1 s−1 in MeCN), but its photodecomposition products in dimethyl sulfoxide (DMSO) quenched 1O2 very efficiently. Upon intense UV irradiation from a xenon lamp, LTG was photobleached rapidly in DMSO and slowly in acetonitrile, alcohol and water. The rate increased significantly when laser pulses at 266 nm were employed. The photobleaching products generated 1O2 twice as strongly as LTG. Photobleaching was usually accompanied by the release of chloride anions, which increased in the presence of ascorbic acid. This suggests the formation of aryl radicals via dechlorination, a process which may be responsible for the photoallergic response observed in some patients. Our results demonstrate that LTG is a moderate generator of 1O2 prone to photodechlorination, especially in a reducing environment, which can contribute to the reported phototoxicity of LTG.  相似文献   

16.
Abstract— The Fourier-transform infrared spectra of chloroform-d solutions of conjugated imines CH3CH=CHCH=NCH(CH3)2 and CH3CH2CH=CHCH=CHCH=NCH(CH3)2 and the related protonated species with HCl, HBr, HI, trichloro, dichloro, monobromo and monochloroacetic acids or propionic acid are presented. The effects of conjugation and protonation are examined. The results show that conjugation slightly increases the basicity of the Schiff bases. HCl, HBr and HI protonate the Schiff bases completely. The carboxylic acids protonate partially depending on their p K a, values. When the Schiff base contains two (or more) C=C bonds conjugated with C=N, the main C=C stretching band undergoes a strong intensification showing that sizeable dipole moment variations occur along the conjugated chain.  相似文献   

17.
Abstract— In order to investigate the interactions and the photoreactions in solution between the thymine (thy) and the psoralen (Pso) rings, we have prepared model compounds Thy-(CH2)n-Pso in which two aromatic chromophores Thy and Pso are linked by flexible polymethylene chains of varying length (CH2)n. Two series of compounds were examined and compared as models for the two important drugs 5-methoxypsoralen and 8-methoxypsoralen. Results concerning the 5-alkoxypsoralen series are reported here. In water, these model molecules exhibit intramolecular ring-ring stacking interactions as indicated by hypochromism in the UV and by shielding of the protons in 1H NMR spectroscopy. These interactions disappear in organic solvents. The photochemical properties of the models were examined in relation with their ground state interaction properties. Irradiation at 365 nm carried out at the usual concentrations (10-2-10-3 M) leads exclusively to a stereoselective dimerization involving the psoralen moieties of the models at the 3,4 double bonds. However, when operating at exceedingly low concentrations (2 × 10-5 M ), the psoralen photodimerization is avoided and a highly regio and stereo-selective psoralen thymine photoaddition is observed involving the 3,4 double bond of psoralen leading to the cis adduct. The same reaction occurs for all models under study being independent of the length of the (CH2)n polymethylene linking chain, n = 2 to 6, 12 and of the solvent used. This is unambiguous proof for the highest intrinsic photoreactivity of the 3,4 vs the 4',5' double bond in 5-alkoxy psoralen.  相似文献   

18.
Abstract— Phthalocyanines are being studied as photosensitizers for virus sterilization of red blood cells (RBC). During optimization of the reaction conditions, we observed a marked effect of the irradiance on production of RBC damage. Using a broad-band light source (600–700 nm) between 5 and 80 mW/ cm2, there was an inverse relationship between irradiance and rate of photohemolysis. This effect was observed with aluminum sulfonated phthalocyanine (AlPcSn) and cationic silicon (HOSiPc-OSi[CH3]2 [CH2]3N+[CH3]3I- phthalocyanine (Pc5) photosensitizers. The same effect occurred when the reduction of RBC negative surface charges was used as an endpoint. Under the same treatment conditions, vesicular stomatitis virus inactivation rate was unaffected by changes in the irradiance. Reduction in oxygen availability for the photochemical reaction at high irradiance could explain the effect. However, theoretical estimates suggest that oxygen depletion is minimal under our conditions. In addition, because the rate of photohemolysis at 80 mW/cm2 was not increased when irradiations were carried out under an oxygen atmosphere this seems unlikely. Likewise, formation of singlet oxygen dimoles at high irradiances does not appear to be involved because the effect was unchanged when light exposure was in D2O. While there is no ready explanation for this irradiance effect, it could be used to increase the safety margin of RBC virucidal treatment by employing exposure at high irradiance, thus minimizing the damage to RBC.  相似文献   

19.
Abstract— The retinylidene Schiff base derivative of seven lysine containing peptides have been prepared in order to investigate solvent and neighboring group effects, on the absorption maximum of the protonated Schiff base chromophore. The peptides studied are Boc-Aib-Lys-Aib-OMe ( 1 ), Boc-Ala-Aib-Lys-OMe ( 2 ), Boc-Ala-Aib-Lys-Aib-OMe ( 3 ), Boc-Aib-Asp-Aib-Aib-Lys-Aib-OMe ( 4 ), Boc-Aib-Asp-Aib-Ala-Aib-Lys-Aib-OMe ( 5 ), Boc-Lys-Val-Gly-Phe-OMe ( 6 ) and Boc-Ser-Ala-Lys-Val-Gly-Phe-OMe ( 7 ). In all cases protonation shifts the absorption maxima to the red by 3150–8450 cm-1. For peptides 1–3 the protonation shifts are significantly larger in nonhydrogen bonding solvents like CHCl3 or CH2Cl2 as compared to hydrogen bonding solvents like CH3OH. The presence of a proximal Asp residue in 4 and 5 results in pronounced blue shift of the absorption maximum of the protonated Schiff base in CHCl3, relative to peptides lacking this residue. Peptides 6 and 7 represent small segments of the bacteriorhodopsin sequence in the vicinity of Lys-216. The presence of Ser reduces the magnitude of the protonation shift.  相似文献   

20.
Abstract— Polymer rose bengal derivatives are converted to their C-6 ammonium salts. The φ1 O2 derived in CH2C12 is a function of the K B of the neutralizing amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号