首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曹春云 《应用数学》2017,30(2):469-474
给定一个正整数序列Q={q_k}_k≥1,其中q_k≥2.任意的x∈[0,1]对应唯一的Q-Cantor展式.令T_Q~n(x)=q_1···q_nx-「q_1···q_nx」.对于任意的正函数φ:N→(0,1)和序列y={y_n}≥1?[0,1],本文考虑集合E_y(φ):={x∈[0,1]:|T_Q~n(x)-y_n|φ(n)i.o.n}的大小,指出了集合E_y(φ)的Lebesgue测度和Hausdorff测度结果只依赖特定级数的敛散性,与y={y_n}_(n≥1)无关.  相似文献   

2.
Necessary and sufficient conditions are studied that a bounded operator T_x =(x_1~*x, x_2~*x,···) on the space ?_∞, where x_n~*∈ ?_∞~*, is lower or upper semi-Fredholm; in particular, topological properties of the set {x_1~*, x_2~*,···} are investigated. Various estimates of the defect d(T) = codim R(T), where R(T) is the range of T, are given. The case of x_n~*= d_nx_(tn)~*,where dn ∈ R and x_(tn)~*≥ 0 are extreme points of the unit ball B_?_∞~*, that is, t_n ∈βN, is considered. In terms of the sequence {t_n}, the conditions of the closedness of the range R(T)are given and the value d(T) is calculated. For example, the condition {n:0 |d_n| δ} = Φ for some δ is sufficient and if for large n points tn are isolated elements of the sequence {t_n},then it is also necessary for the closedness of R(T)(t_(n0) is isolated if there is a neighborhood U of t_(n0) satisfying t_n ■ U for all n ≠ n0). If {n:|d_n| δ} =Φ, then d(T) is equal to the defect δ{_tn} of {t_n}. It is shown that if d(T) = ∞ and R(T) is closed, then there exists a sequence {A_n} of pairwise disjoint subsets of N satisfying χ_(A_n)■R(T).  相似文献   

3.
假设E为一致凸的Banach空间,对偶空间E*有Kadec-Klee性质,K为E的非空闭凸子集{Ti:i=1,2,…,N}:K→K为Browder-Petryshyn意义下的严格伪压缩映像且F=∩Ni=1F(Ti)≠0.{αn}n∞=1满足0相似文献   

4.
题83已知数列{an}为等差数列,数列{bn}为等比数列.(1)若a1+a2+a3=-12,b1·b2·b3=27,且a1+b1,a2+b2,a3+b3是各项均为正整数的等比数列的前3项,求数列{an},{bn}的通项;  相似文献   

5.
阚绪周  郭伟平 《应用数学》2012,25(3):638-647
设E是实的一致凸Banach空间,K是E的一个非空闭凸集,P是E到K上的非扩张的保核收缩映射.设T1,T2,T3:K→E分别是具有数列{hn},{ln},{kn}[1,∞)的渐近非扩张非自映射,使得sum (hn-1) from n=1 to ∞<∞,sum ((ln-1)) from n=1 to ∞<∞及sum (n=1(kn-1) from n=1 to ∞<∞,且F=F(T1)∩F(T2)∩F(T3)={x∈K:T1x=T2x=T3x}≠Ф.定义迭代序列{xn}:x1∈K,xn+1=P((1-αn)xn+αnT1(PT1)n-1yn),yn=P((1-βn)xn+βnT2(PT2)n-1zn),zn=P((1-γn)xn+γnT3(PT3)n-1xn),其中{αn},{βn},{γn}[ε,1-ε],ε是大于零的实数.(i)如果T1,T2,T3中有一个是全连续的或者半紧的,则{xn}强收敛于某一点q∈F;(ii)如果E具有Frechet可微范数或者满足Opial’s条件或者E的对偶空间E~*具有Kadec-Klee性质,则{xn}弱收敛于某一点q∈F.  相似文献   

6.
假设E为一致凸Banach空间,K为E的非空闭凸子集且为E的非扩张收缩,P为非扩张收缩映像.{Ti:i=1,2,…,N}:K→E为非扩张映像且F(T)=∩ from i=1 to N F(Ti)≠■.定义{xn}如下:x0∈K,xn=P(αnxn-1+(1-αn)TnP[βnxn-1+(1-βn)Tnxn]),n≥1,这里{αn},{βn}为[δ,1-δ]中的实序列,其中δ∈(0,1).若{Ti:i=1,2,…,N}满足条件(B),则{xn}强收敛于x*∈F(T).  相似文献   

7.
本文中, 我们主要刻画了Toeplitz算子$T=M_{z^k}+M^*_{z^l}$的约化子空间, 其中 $k_i, l_i$ ($i=1,2$) 均是正整数, $k=(k_1,k_2), l=(l_1,l_2)$ 且 $k\neq l$, $M_{z^k}$, $M_{z^l}$ 是双圆盘加权Hardy空间$\mathcal{H}_\omega^2(\mathbb{D}^2)$上的乘法算子. 对权系数 $\omega$ 适当限制, 我们证明了由 $z^m$ 生成的 $T$ 的约化子空间均是极小的. 特别地, Bergman 空间和加权 Dirichlet 空间 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 均是满足该限制条件的加权Hardy空间. 作为应用, 我们刻画了 $\mathcal{D}_\delta(\mathbb{D}^2)(\delta>0)$ 上 Toeplitz 算子 $T_{z^k+\bar{z}^l}$ 的约化子空间, 该结论是对双圆盘Bergman 空间上相关结论的推广.  相似文献   

8.
设有向图 D_1=(V_1,A_1),D_2=(V_2 A_2).称有向图 D_2:D_2=(V,A) 为 D_1,D_2的半强积,如果 V=V_1×V_2,A={((u_1,v_1),(u_2,v_2))|u_1=u_2且(v_1,v_2)∈A_2或者(u_1,u_2)∈A_1且(v_1,v_2)∈A_2}.  相似文献   

9.
Let H =(V, E) be a k-uniform hypergraph. For 1 ≤ s ≤ k-1, an s-path P~(k,s)_n of length n in H is a sequence of distinct vertices v_1, v_2, ···, v_(s+n(k-s)) such that {v_(1+i(k-s)), ···, v_(s+(i+1)(k-s))} is an edge of H for each 0 ≤ i ≤ n-1.In this paper, we prove that R(P~(3 s,s)_n, P~(3 s,s)_3) =(2 n + 1)s + 1 for n ≥ 3.  相似文献   

10.
The present paper is concerned with the nonlinear elliptic system of second order. Firstly, we shall establish a complex form of the system. Secondly .we shall consider the solvability of some boundary value problems for tbe complex equation of second order. let (1) \[{\Phi _j}(x,y,U,V,{U_x},{U_y},...,{U_{xx}},{U_{yy}},{V_{xx}},{V_{xy}},{V_{yy}}) = 0,j = 1,2\] be the I. G. Petrowkii’s nonlinear elliptic system of second Qrder in the botinded domain G, where \[{\Phi _j}(x,y,{z_1},...,{z_{12}})(j = 1,2)\]) are continuous real functions of the variables \[x,y[(x,y) \in G],{z_1},...,{z_{12}} \in R\], (the real axis), and contiriupusly differentiable for \[{z_1},...,{z_{12}} \in R\]. The solutions \[[U(x,y),V(x,y)]\], F(a?, y)] of the system are understood in the generalized sense. THEOBEM I. i) If the I. G. Petrovskii;s nonlinear system of equations (1) satisfies the M. I. visik-D. Xiagi’s uniformly elliptic condition for any solutions U(x,y),V(x,y) of (1) in G, then it can be written as the following complex equation? (2)\[{W_{z\overline z }} = F(z,W,{W_z},\overline {{W_z}} ,{W_{zz}},{\overline W _{zz}})\] where W=U+iV, z=x+iy, \[{W_z} = \frac{1}{2}[{W_x} - i{W_y}],...,\], ii) If the I. G. Petrovskii's nonlinear elliptic system (1) satisfies the condition that there exist two positive constants \[\delta \] and K, such that (3) \[|{\Phi _{j{U_{xx}}}}|,|{\Phi _{j{U_{xy}}}}|,|{\Phi _{j{U_{yy}}}}|,|{\Phi _{j{V_{xx}}}}|,|{\Phi _{j{V_{xy}}}}|,|{\Phi _{j{V_{yy}}}}| \leqslant K,j = 1,2\] \[|det(A)| \geqslant \delta > 0\], in G, then by a suitable linear trans-formation of the variables (x,y)into variables \[(\xi ,\eta )\], system (1) can be written as the following coinplex equation ⑷ \[{W_{\xi \xi }} = F(\xi ,W,{W_\xi },{\overline W _\xi },{W_{\xi \xi }},{\overline W _{\xi \xi }}),\varsigma = \xi + i\eta \] In the following section, we discuss the complex equation (2) of the following form: ,We^B(z9 Wee)x .\[(5)\left\{ \begin{gathered} {W_{zz}} = F(z,W,{W_z},{\overline W _z},{W_{zz}},{\overline W _{zz}}) \hfill \ F = {Q_1}{W_{zz}} + {Q_2}\overline {{W_{\overline z \overline z }}} + {Q_4}{W_{zz}} + {A_1}{W_z} + {A_2}{\overline W _{\overline z }} \hfill \ + {A_3}\overline {{W_z}} + {A_4}{W_{\bar z}} + {A_5}W + {A_6}\bar W + {A_7}, \hfill \ {Q_j} = {Q_j}(z,W,{W_{\bar z}},{\overline W _{\bar z}},{W_{zz}},{\overline W _{zz}}),j = 1,...,4 \hfill \ {A_j} = {A_j}(z,W,{W_z},{\overline W _z}),j = 1,...,7 \hfill \\ \end{gathered} \right.\] 1) \[{Q_j}(z,W,{W_z},{\overline W _z},U,V),j = 1,...,4.{A_j} = (z,W,{W_z},{\overline W _z}),j = 1,...,7\] are measurable functions of z for any continuously differentiable functions W(z) and measurable functions U(z), V(z) in G, Furthermore they satisfy (6)\[{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_0},j = 1,2,{\left\| {{A_j}} \right\|_{{L_p}(\overline {G)} }} \leqslant {K_1},j = 3,...,7\] where\[{K_0},{K_1}( \leqslant {K_0}),p( > 2)\] are constants: 2) Qj, Aj are continuous for \[W,{W_z},{\overline W _z} \in E\](the whole plane) and the continuity is uniform with respect to almost every point \[z \in G\] and \[U,V \in E\] 3) \[F(z,W,{W_z},{\overline W _z},U,V)\] satisfies the following Lipschitz's condition, i.e. for almost every point \[z \in G\], and for all \[W,{W_z},{\overline W _z}{U_1},{U_2},{V_1},{V_2} \in E\], the inequality (7)\[\begin{gathered} |F(z,W,{W_z},{\overline W _z},{U_1},{V_1}) - F(z,W,{W_z},{\overline W _z},{U_2},{V_2})| \hfill \ \leqslant {q_0}|{U_1} - {U_2}| + q_0^'|{V_1} - {V_2}|,{q_0} + q_0^' < 1 \hfill \\ \end{gathered} \] holds where \[{q_0},q_0^'\] are two nonnegative constants. In this paper, let G be a simply connected domain with boundary \[\Gamma \in C_\mu ^2(0 < \mu < 1)\]; without loss of geaerality, we may assume that G is the unit disk |z|<1. Now we, describe the results of the solvability of Riemann-Hilbert botindary value problem (Problem R-H) and the oblique derivative problem (Problem P) for Eq. (5) in the unit disk G: |z| <1. Problem R-H. We try to find a solution W(z)of Eq. (5) which is continuonsly differentiable on \[G\], and satisfies the boundary conditions: (8) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}},{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \]? where \[{\chi _1},{\chi _2}\] are two integers, and \[{r_j} \in C_v^{j - 1}(\Gamma ),j = 1,2,\frac{1}{2} < v < 1\] Problem P. we try to find a solution W(z) of Eq. (5) which is continuously diffierentiabfe on \[\overline G \] and satisfies the boundaory conditions: (9) \[\operatorname{Re} [{{\bar z}^{{\chi _1}}}{W_z}] = {r_1}(z),Re[{{\bar z}^{{\chi _2}}}\overline {W(z)} ] = {r_2}(z),z \in \Gamma \], Where \[{\chi _1},{\chi _2},{r_1}(z),{r_2}(z)\] are the same as in (8), but \[{r_2}(z) \in {C_v}(\Gamma )\]. Theorem II. Suppose that Eq. (5) satisfies the condition C and the constants \[q_0^'\] and K1 are adequately small; then the solvability of Problem R-H is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem R-H is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} \] there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem R-H; 3) WHen \[{\chi _1} < 0,{\chi _2} < 0\], there are \[2(|{\chi _1}| + |{\chi _2}| - 1)\] solvable conditions for Problem R-H. Theorem III Let Eq (5) satisf the condition C and the constants \[q_0^'\] and \[{K_1}\] are adequately small, then tbe solvability of Problem P is as follows: 1) When \[{\chi _1} \geqslant 0,{\chi _2} \geqslant 0\] Problem P is solvable; 2) When \[{\chi _1} < 0,{\chi _2} \geqslant 0(or{\kern 1pt} {\kern 1pt} {\chi _1} \geqslant 0,{\chi _2} < 0){\kern 1pt} {\kern 1pt} {\kern 1pt} \], there are \[2|{\chi _1}| - 1(or2|{\chi _2}| - 1)\] solvable conditions for Problem P; 3) When \[{\chi _1} < 0,{\chi _2} < 0\]; there are \[2|{\chi _1}|{\text{ + }}|{\chi _2}| - 1)\] solvable conditions for Problem P. Furthermore, the solution W(z) of Problem P for Eq. (5) may be expressed as \[{g_j}(\xi ,z) = \left\{ \begin{gathered} \int_0^z {\frac{{{z^{2{\chi _j} + 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} \geqslant 0} \hfill \ \int_0^z {\frac{{{\xi ^{ - 2{\chi _j} - 1}}}}{{1 - \bar \xi z}}dz,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\chi _j} < 0} \hfill \\ \end{gathered} \right.j = 1,2\] where \[{\Phi _0}(z) = a + ib\] is a complex constant,and \[{\Phi _1}(z),{\Phi _2}(z)\] are two analytic functions. The proofs of the above stated theorems are based on a prior estimates for the bounded solutes of these boundary value problems and Leray-Schander theorem. Besides, we have considered also the solvability of Problem R-H and Problem P for Eq. (6) in the multiply connected domain.  相似文献   

11.
设{ξ_i}_(i=1)~∞是一列独立同分布在图Γ=(V(Γ),E(Γ))上取值的随机元,{a_i}_(i=1)~∞是一列固定的正整数.文章给出图值随机元序列的r-阶权函数、r-阶均值集与r-阶中心序等概念,将随机元序列的Fréchet样本均值的概念推广到更一般的情形,并且讨论了其基本性质,获得了关于图值随机元序列的广义强大数定理.  相似文献   

12.
假定 $X$ 是具有范数$\|\cdot\|$的复 Banach 空间, $n$ 是一个满足 $\dim X\geq n\geq2$的正整数. 本文考虑由下式定义的推广的Roper-Suffridge算子 $\Phi_{n,\beta_2, \gamma_2, \ldots , \beta_{n+1}, \gamma_{n+1}}(f)$: \begin{equation} \begin{array}{lll} \Phi _{n, \beta_2, \gamma_2, \ldots, \beta_{n+1},\gamma_{n+1}}(f)(x) &;\hspace{-3mm}=&;\hspace{-3mm}\dl\he{j=1}{n}\bigg(\frac{f(x^*_1(x))}{x^*_1(x)})\bigg)^{\beta_j}(f''(x^*_1(x))^{\gamma_j}x^*_j(x) x_j\\ &;&;+\bigg(\dl\frac{f(x^*_1(x))}{x^*_1(x)}\bigg)^{\beta_{n+1}}(f''(x^*_1(x)))^{\gamma_{n+1}}\bigg(x-\dl\he{j=1}{n}x^*_j(x) x_j\bigg),\nonumber \end{array} \end{equation} 其中 $x\in\Omega_{p_1, p_2, \ldots, p_{n+1}}$, $\beta_1=1, \gamma_1=0$ 和 \begin{equation} \begin{array}{lll} \Omega_{p_1, p_2, \ldots, p_{n+1}}=\bigg\{x\in X: \dl\he{j=1}{n}| x^*_j(x)|^{p_j}+\bigg\|x-\dl\he{j=1}{n}x^*_j(x)x_j\bigg\|^{p_{n+1}}<1\bigg\},\nonumber \end{array} \end{equation} 这里 $p_j>1 \,( j=1, 2,\ldots, n+1$), 线性无关族 $\{x_1, x_2, \ldots, x_n \}\subset X $ 与 $\{x^*_1, x^*_2, \ldots, x^*_n \}\subset X^* $ 满足 $x^*_j(x_j)=\|x_j\|=1 (j=1, 2, \ldots, n)$ 和 $x^*_j(x_k)=0 \, (j\neq k)$, 我们选取幂函数的单值分支满足 $(\frac{f(\xi)}{\xi})^{\beta_j}|_{\xi=0}= 1$ 和 $(f''(\xi))^{\gamma_j}|_{\xi=0}=1, \, j=2, \ldots , n+1$. 本文将证明: 对某些合适的常数$\beta_j, \gamma_j$, 算子$\Phi_{n,\beta_2, \gamma_2, \ldots, \beta_{n+1}, \gamma_{n+1}}(f)$ 在$\Omega_{p_1, p_2, \ldots , p_{n+1}}$上保持$\alpha$阶的殆$\beta$型螺形映照和 $\alpha$阶的$\beta$型螺形映照.  相似文献   

13.
关于点集拓扑学中的一个定理   总被引:2,自引:0,他引:2  
若 A\cup B≠D(c),则存在(c,v_0)∈D(c),使\bar{\lambda}(v_0)a.故存在 n_0,使当 n≥n_0时\bar{\lambda}(v_0)<β_n,\underline{\lambda}(v_0)>α_n。利用常规证法(参见[1]中p.122)可知,必存在R~1×X 中的有界开集 U,满足 E(V_0)\subset U,\partial D=\phi,\bar{U}(α_n_0,β_n_0)×X。由 D 的定义知,存在{n}的子列{n_k}及 Z_n_k∈\mathcal{C}_n_k,使使 Z_n_k→(c,v_0)。不失一般可设诸 Z_n_k 均属于 U。由(2)式及\mathcal{C}_{nk}的连通性,并注意到\bar{U}(α_n_0,β_n_0)×X,可知当 n_k≥n_0时有\mathcal{C}_{nk}\cap \partial U\not=\phi,取 y_n_k∈\mathcal{C}_{nk}\cap \partial U,则{y_n_k|k=1,2,…}是列紧的。故存在{y_n_k}的子列{y~n_k_i}及 y~*∈\partial U,使 y~n_k_i→y~*。显然y~*∈D,故 y~*∈\partial D \cap D,此与\partial U\cap D=\phi矛盾。所以(5)式成立。  相似文献   

14.
一个有向多重图D的跳图$J(D)$是一个顶点集为$D$的弧集,其中$(a,b)$是$J(D)$的一条弧当且仅当存在有向多重图$D$中的顶点$u_1$, $v_1$, $u_2$, $v_2$,使得$a=(u_1,v_1)$, $b=(u_2,v_2)$ 并且$v_1\neq u_2$.本文刻画了有向多重图类$\mathcal{H}_1$和$\mathcal{H}_2$,并证明了一个有向多重图$D$的跳图$J(D)$是强连通的当且仅当$D\not\in \mathcal{H}_1$.特别地, $J(D)$是弱连通的当且仅当$D\not\in \mathcal{H}_2$.进一步, 得到以下结果: (i) 存在有向多重图类$\mathcal{D}$使得有向多重图$D$的强连通跳图$J(D)$是强迹连通的当且仅当$D\not\in\mathcal{D}$. (ii) 每一个有向多重图$D$的强连通跳图$J(D)$是弱迹连通的,因此是超欧拉的. (iii) 每一个有向多重图D的弱连通跳图$J(D)$含有生成迹.  相似文献   

15.
主要证明了:设f(z)于开平面上超越亚纯,0δ1,且lim—r→∞(logT(r+1/r,f)/logT(r,f))+∞,则存在一列复数a_n(n=1,2,…),使集合{a:△_1)(a,f)δ}含于∩∞j=1∪∞n=j﹛a:|a-an|e-enσ﹜,其中σ=(log2/2-δ)/2([10/δ])0.即{a:△_(1))(a,f)δ为一有穷μ测度集.  相似文献   

16.
陈寿禄  徐旭 《数学通报》2000,(10):19-21
1 问题的提出我们先从两个例子谈起例 1 求函数y=(2x 1 ) / (x- 1 )的值域解 y =(2x 1 ) / (x - 1 )的反函数是y=(x 1 ) / (x- 2 ) ,反函数的定义域是 {x|x∈R ,x≠ 2 } ,所以函数y =(2x 1 ) / (x - 1 )的值域是 {y|y∈R ,y≠ 2 } .例 2 求函数y =(2x 1 ) / (x - 1 )的反函数解 由y =(2x 1 ) / (x - 1 )得x=(y 1 ) / (y- 2 ) ,又y =(2x 1 ) / (x - 1 ) =2 3/ (x- 1 )≠ 2 ,原函数的值域是 (-∞ ,2 )∪ (2 , ∞ )即为反函数的定义域 ,所以要求的反函数是 :y=(x 1 ) / (x- 2 ) (x≠ 2 ) .这…  相似文献   

17.
设E是Banach空间,T∶E→2E*是极大单调算子,T-10≠ф.令x0∈E,yn=(J λnT)-1xn en,xn 1=J-1(αnJxn (1-αn)Jyn),n0,λn>0,αn∈[0,1],文章研究了{xn}收敛性.  相似文献   

18.
孙志忠 《计算数学》1995,17(4):391-401
2.差分格式的可能性和收敛性我们证明[1]中建立的差分格式(6.1-6.17)是唯一可解且二阶收敛的.记(3.1-3.10)的解为{ψ ,p,q},(4.1-4.13)的解为{ψ,p,q;u_1,u_2,v_1,v_2,w_1,w_2}.假设(3)的系数满足如下条件:当|ε_l|≤ε_0,1≤l≤4时,使得  相似文献   

19.
胡长松 《应用数学》2004,17(4):568-574
设D是一致凸Banach空间X的非空闭凸子集 ,T∶D→D是渐近非扩张映射且kn ≥ 1 ,∑ ∞n =1(kn- 1 ) <∞ .设T的不动点集F(T) ≠ ,T是全连续的 (X满足Opial条件 ) ,{xn},{yn},{zn}由定义 2给出 ,如果 ∑∞n =1cn <∞ ,∑ ∞n =1c′n <∞ ,∑ ∞n =1c″n <∞ ,且下列条件之一满足 :(i)b″n ∈ [a ,b] ( 0 ,1 ) ;b′n ∈ [0 ,β];bn ∈[0 ,α],αβ β <1 ;(ii)b′n ∈ [a ,b] ( 0 ,1 ) ;b″n ∈ [a ,1 ];bn ∈ [0 ,b];(iii)bn ∈[a ,b] ( 0 ,1 ) ;b′n ∈ [a ,1 ],则 {xn},{yn},{zn}强收敛于T的不动点 .( {xn}弱收敛于T的不动点 ) .  相似文献   

20.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号