首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.  相似文献   

2.
3.
We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself.  相似文献   

4.
It is known that classical electromagnetic radiation at a frequency in resonance with energy splittings of atoms in a dielectric medium can be described using the classical sine-Gordon theory. In this paper we quantize the electromagnetic field and compute some quantum effects by using known results from the sine-Gordon quantum field theory. In particular, we compute the intensity of spontaneously emitted radiation using the thermodynamic Bethe ansatz with boundary interactions.  相似文献   

5.
In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j=j0.  相似文献   

6.
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.  相似文献   

7.
许雪芬 《大学物理》2006,25(7):4-5,17
建立一维晶格振动声子谱的全量子理论,其哈密顿量是自动包含了Born-von-Karmann边界条件的环链量子哈密顿量,然后用不变本征算符方法简捷地求出其声子谱.  相似文献   

8.
It is shown that a quantum gravity formulation exists on the basis of quantum number conservation, the laws of thermodynamics, unspecific interactions, and locally maximizing the ratio of resulting degrees of freedom per imposed degree of freedom of the theory. The First Law of thermodynamics is evaluated by imposing boundary conditions to the theory. These boundary conditions determine the details of the complex world structure. No explicite microscopic quantum structure is required, and thus no ambiguity arises on how to construct the model. Although no dynamical computations of quantum systems are possible on this basis, all well established physics may be recovered, and all measurable quantities may be computed. The recovery of physical laws is shown by extremizing the entropy, which means varying the action on the bulk and boundary of small volumes of curved space-time. It is sketched how Quantum Field Theory (QFT) and General Relativity (GR) are recovered with no further assumptions except for imposing the dimension of a second derivative of the metric on the gravitational field equations. The new concepts are 1. the abstract organization of statistical quantum states, allowing for the possibility of absent quantum microstructure, 2. the optimization of the locally resulting degrees of freedom per imposed degree of freedom of the theory, allowing for the reconstruction of the spacetime dimensions, 3. the reconstruction of physical and geometric quantities by means of stringent mathematical or physical justifications, 4. the fully general recovery of GR by quasi-local variation methods applied on small portions of spacetime.  相似文献   

9.
In physical theories, boundary or initial conditions play the role of selecting special situations which can be described by a theory with its general laws. Cosmology has long been suspected to be different in that its fundamental theory should explain the fact that we can observe only one particular realization. This is not realized, however, in the classical formulation and in its conventional quantization; the situation is even worse due to the singularity problem. In recent years, a new formulation of quantum cosmology has been developed which is based on quantum geometry, a candidate for a theory of quantum gravity. Here, the dynamical law and initial conditions turn out to be linked intimately, in combination with a solution of the singularity problem.  相似文献   

10.
《Nuclear Physics B》1988,303(4):728-750
We identify the quantum theory of cosmological perturbations with the quantum field theory in curved spacetime with emphasis on its field concept. We materialize this idea by using a coherent state as a quantum analogue of a nontrivial classical field configuration. We present analytic results in a de Sitter universe for the massless and massive minimal free scalar fields. Some new features on the spectrum of perturbations are obtained for the massive case. We also show how such quantum field theories can be derived from quantum gravity using the semiclassical approximation. A physical degree of freedom is picked up from three scalar perturbations in the quantum gravity scalar system and its Schrödinger equation is derived. Peculiar features of quantum fields at imaginary time and its possible implications on boundary conditions for the wave function of the universe are also discussed.  相似文献   

11.
We introduce a new “positive formalism” for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.  相似文献   

12.
《Annals of Physics》1987,174(2):401-429
Generalizing the quantum field theory (QFT) with boundary conditions in covariant gauge to the case of finite temperature, we develop the quantum electrodynamics (QED) with boundary conditions in the Matsubara approach as well as in the thermofield formulation. We rederive the known results of the free-field theory for the pressure and the free energy of the Casimir problem. For infinitely thin plates we calculate the radiative corrections in secondorder perturbation theory at finite temperature. Thereby it turns out that the calculation of the vacuum energy at the vanishing temperature via the Z functional is much simpler than a calculation via the energy momentum tensor. This observation allows determination of the influence of static electromagnetic fields on the Casimir problem.  相似文献   

13.
14.
It is shown that the large-N limit of quantum chromodynamics in twodimensions is determined by classical equations with boundary conditions. The nonperturbative quantum spectrum of mesonic bound states is obtained from a classical equation with a simple N-dependent boundary condition on the local charge density. The simplicity of the classical correspondence is shown to be directly tied to the simplicity of the space of gauge invariant operators of the theory. Implications for other large-N models are discussed.  相似文献   

15.
We consider the finite-temperature scaling properties of a Kondo-destroying quantum critical point in the Ising-anisotropic Bose-Fermi Kondo model (BFKM). A cluster-updating Monte Carlo approach is used, in order to reliably access a wide temperature range. The scaling function for the two-point spin correlator is found to have the form dictated by a boundary conformal field theory, even though the underlying Hamiltonian lacks conformal invariance. Similar conclusions are reached for all multipoint correlators of the spin-isotropic BFKM in a dynamical large-N limit. Our results suggest that the quantum critical local properties of the sub-Ohmic BFKM are those of an underlying boundary conformal field theory.  相似文献   

16.
Elastic quantum bound-state reflection from a hard-wall boundary provides direct information regarding the structure and compressibility of quantum bound states. We discuss elastic quantum bound-state reflection and derive a general theory for elastic reflection of shallow dimers from hard-wall surfaces using effective field theory. We show that there is a small expansion parameter for analytic calculations of the reflection scattering length. We present a calculation up to second order in the effective Hamiltonian in one, two, and three dimensions. We also provide numerical lattice results for all three cases as a comparison with our effective field theory results. Finally, we provide an analysis of the compressibility of the alpha particle confined to a cubic lattice with vanishing Dirichlet boundaries.  相似文献   

17.
A traversal time that has no problem of superluminality was advanced for particles to tunnel through potential barriers in the non‐relativistic quantum theory in a previous paper by C.‐F. Li and Q. Wang, Physica B 296 (2001) 356. This time is generalized in this paper to Dirac's relativistic quantum theory. Both evanescent and propagating cases are considered. It is shown that the traversal time in the evanescent case has much the same properties as in the non‐relativistic quantum theory and thus has no problem of superluminality. It also gets rid of the problem of superluminality in the propagating case. Comparisons with the dwell time, the group delay, and the velocity of monochromatic front are also made.  相似文献   

18.
Many quantum communication schemes rely on the resource of entanglement. For example, quantum teleportation is the transfer of arbitrary quantum states through a classical communication channel using shared entanglement. Entanglement, however, is in general not easy to produce on demand. The bottom line of this work is that a particular kind of entanglement, namely that based on continuous quantum variables, can be created relatively easily. Only squeezers and beam splitters are required to entangle arbitrarily many electromagnetic modes. Similarly, other relevant operations in quantum communication protocols become feasible in the continuous‐variable setting. For instance, measurements in the maximally entangled basis of arbitrarily many modes can be accomplished via linear optics and efficient homodyne detections. In the first two chapters, some basics of quantum optics and quantum information theory are presented. These results are then needed in Chapter III, where we characterize continuous‐variable entanglement and show how to make it. The members of a family of multi‐mode states are found to be truly multi‐party entangled with respect to all their modes. These states also violate multi‐party inequalities imposed by local realism, as we demonstrate for some members of the family. Further, we discuss how to measure and verify multi‐party continuous‐variable entanglement. Various quantum communication protocols based on the continuous‐variable entangled states are discussed and developed in Chapter IV. These include the teleportation of entanglement (entanglement swapping) as a test for genuine quantum teleportation. It is shown how to optimize the performance of continuous‐variable entanglement swapping. We highlight the similarities and differences between continuous‐variable entanglement swapping and entanglement swapping with discrete variables. Chapter IV also contains a few remarks on quantum dense coding, quantum error correction, and entanglement distillation with continuous variables, and in addition a review of quantum cryptographic schemes based on continuous variables. Finally, in Chapter V, we consider a multi‐party generalization of quantum teleportation. This so‐called telecloning means that arbitrary quantum states are transferred not only to a single receiver, but to several. However, due to the quantum mechanical no‐cloning theorem, arbitrary quantum states cannot be perfectly copied. We present a protocol that enables telecloning of arbitrary coherent states with the optimal quality allowed by quantum theory. The entangled states needed in this scheme are again producible with squeezed light and beam splitters. Although the telecloning scheme may also be used for "local'' cloning of coherent states, we show that cloning coherent states locally can be achieved in an optimal fashion without entanglement. It only requires a phase‐insensitive amplifier and beam splitters.  相似文献   

19.
Quantum integrable models that possess N = 2 supersymmetry are investigated on the half-space. Conformal perturbation theory is used to identify some N = 2 supersymmetric boundary integrable models, and the effective boundary Landau-Ginzburg formulations are constructed. It is found that N = 2 supersymmetry largely determines the boundary action in terms of the bulk, and in particular, the boundary bosonic potential is |W|2, where W is the bulk superpotential. Supersymmetry is also investigated using the affine quantum group symmetry of exact scattering matrices, and the affine quantum group symmetry of boundary reflection matrices is analyzed both for supersymmetric and more general models. Some N = 2 supersymmetry preserving boundary reflection matrices are given, and their connection with the boundary Landau-Ginzburg actions is discussed.  相似文献   

20.
The quantum dynamics of a chaotic billiard with moving boundary is considered in this paper. We found a shape parameter Hamiltonian expansion, which enables us to obtain the spectrum of the deformed billiard for deformations so large as the characteristic wavelength. Then, for a specified time-dependent shape variation, the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the distribution of energy spreads diffusively for the first oscillations of the boundary (=2Dt). We studied the diffusion constant D as a function of the boundary velocity and found differences with theoretical predictions based on random matrix theory. By extracting highly phase-space localized structures from the spectrum, previous differences were reduced significantly. This fact provides numerical evidence of the influence of phase-space localization on the quantum diffusion of a chaotic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号