首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assembly of amphiphilic copolymers consisting of poly( N, N-dimethylamino-2-ethyl methacrylate) (PDMAEMA) and poly(-caprolactone) (PCL) segments arranged in graft and linear diblock architectures was investigated in this work by means of dynamic light scattering (DLS) in aqueous solution and by atomic force microscopy (AFM) on thin deposits. The solid-state deposits of the micelles were generated by a "freeze-drying" technique that preserves the initial micelle morphology in solution. A comparison between the morphological properties of graft copolymers with corresponding diblock copolymers was established to demonstrate the effect of the copolymer architecture on the micelle structure and organization.  相似文献   

2.
Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers (PDMAEMA-g-PCL) with various compositions and molecular weights were synthesised via a fully controlled three-step strategy. First, poly(ε-caprolactone) macromonomers (PCLMA) were prepared by ring-opening polymerization (ROP) of ε-caprolactone (CL) initiated by aluminum triisopropoxide (Al(OiPr)3), followed in a second step by quantitative esterification of PCL hydroxy end-groups with a methacrylic acid derivative. Finally, the controlled copolymerization of PCLMA and N,N-dimethylamino-2-ethyl methacrylate (DMAEMA) was carried out by atom transfer radical polymerisation (ATRP) in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10, hexamethyl triethylenetetramine and ethyl 2-bromoisobutyrate as catalyst and initiator, respectively. Furthermore, PDMAEMA-g-PCL graft copolymers were reacted with methyl iodide to convert the pendant tertiary amines into quaternary ammonium iodides increasing accordingly their water solubility. Some preliminary experiments was further carried out by tensiometry and dynamic light scattering in order to shed so light on the tensioactive behaviour of these amphiphilic graft copolymers (with protonated amines or quaternary ammonium cations).  相似文献   

3.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

4.
Novozyme-435催化10-羟基癸酸进行自缩聚反应得到线性聚酯, 端基分别是羟基(—OH)和羧基(—COOH), 在三乙胺催化下, 分别用α-溴代丙酰溴和三甲基氯硅烷(TMSCL)进行端基官能化生成一个单官能度的大分子引发剂, 在CuCl/2,2'-联吡啶(bpy)催化体系中, 引发甲基丙烯酸环氧丙酯(GMA)的原子转移自由基反应(ATRP), 得到聚(10-羟基癸酸酯)/聚甲基丙烯酸环氧丙酯(PHDA-b-PGMA) AB 型两亲性嵌段共聚物, 其结构及分子量(分布)通过核磁共振和凝胶渗透色谱(GPC)确证. 此AB型两亲性嵌段共聚物在水溶液中能自组装形成纳米粒子, 用原子力显微镜(AFM)观察粒子的形状和大小.  相似文献   

5.
Adaptive and amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate-graft-poly[epsilon-caprolactone]) co-networks (netP(DMAEMA-g-PCL)) were synthesized from a combination of controlled polymerization techniques. Firstly, PCL cross-linkers were produced by ring-opening polymerization (ROP) of epsilon-CL initiated by 1,4-butane-diol and catalyzed by tin(II) 2-ethylhexanoate ([Sn(Oct)2]), followed by the quantitative esterification reaction of terminal hydroxyl end-groups with methacrylic anhydride. Then, PCL cross-linkers were copolymerized to DMAEMA monomers by atom-transfer radical polymerization (ATRP) in THF at 60 degrees C using CuBr complexed by 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA) and 2-ethyl isobutyrylbromide (EiBBr) as catalytic complex and initiator, respectively. A comprehensive study of gel formation was carried out by employing dynamic light scattering (DLS) to determine the gel point as a function of several parameters and to characterize the viscous solutions obtained before the gel point was reached. The evolution of the mean diameters was compared to a model previously developed by Fukuda and these attest to the living formation of the polymer co-network. Furthermore, we also demonstrated the reliability of ATRP for producing well-defined and homogeneous polymer co-networks by the smaller deviation from Flory's theory in terms of cross-linking density. For sake of clarity, the impact of polymerization techniques over the final structure and, therefore, properties was highlighted by comparing two samples of similar composition, but that were produced by either ATRP or thermal-initiated free-radical polymerization (FRP).  相似文献   

6.
Four-arm star block polymers consisting of hydrophobic poly(?-caprolactone) (PCL) block and hydrophilic poly(2-(diethylamino) ethyl methacrylate)) (PDEAEMA) block were successfully synthesized by ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Chain lengths of PDEAEMA segments were varied to obtain a series of star copolymers with different hydrophilic/hydrophobic ratio, which were desired for self-assembly study. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) were used to study their self-assembly behavior. In the PBS solution with different pH value, the star polymers formed micelles or nanoparticles. Furthermore, the morphologies of the micelles were also pH-dependent. Critical micelle concentrations of star copolymers changed from 5.0 to 17.5 mg/L with the increase of hydrophilic block length or the pH decrease. Moreover, a steady increase was found on the micelles diameters when the pH decreased from 7.0 to 3.0. The low CMC value and slight changes on micelle diameter indicated that the micelle remained stable under the changing external stimulus.  相似文献   

7.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

8.
A new class of supramolecular and biomimetic glycopolymer/poly(epsilon-caprolactone)-based polypseudorotaxane/glycopolymer triblock copolymers (poly(D-gluconamidoethyl methacrylate)-PPR-poly(D-gluconamidoethyl methacrylate), PGAMA-PPR-PGAMA), exhibiting controlled molecular weights and low polydispersities, was synthesized by the combination of ring-opening polymerization of epsilon-caprolactone, supramolecular inclusion reaction, and direct atom transfer radical polymerization (ATRP) of unprotected D-gluconamidoethyl methacrylate (GAMA) glycomonomer. The PPR macroinitiator for ATRP was prepared by the inclusion complexation of biodegradable poly(epsilon-caprolactone) (PCL) with alpha-cyclodextrin (alpha-CD), in which the crystalline PCL segments were included into the hydrophobic alpha-CD cavities and their crystallization was completely suppressed. Moreover, the self-assembled aggregates from these triblock copolymers have a hydrophilic glycopolymer shell and an oligosaccharide threaded polypseudorotaxane core, which changed from spherical micelles to vesicles with the decreasing weight fraction of glycopolymer segments. Furthermore, it was demonstrated that these triblock copolymers had specific biomolecular recognition with concanavalin A (Con A) in comparison with bovine serum albumin (BSA). To the best of our knowledge, this is the first report that describes the synthesis of supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids and the fabrication of glucose-shelled and oligosaccharide-threaded polypseudorotaxane-cored aggregates. This hopefully provides a platform for targeted drug delivery and for studying the biomolecular recognition between sugar and lectin.  相似文献   

9.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

10.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A novel heterofunctional initiator, synthesized from pentaerythritol in a three step reaction sequence with two ring opening polymerization (ROP) and two atom transfer radical polymerization (ATRP) initiating sites, was used to prepare A2B2 miktoarm star copolymers of poly(ε‐caprolactone), PεCL, with polystyrene, PS, poly(methyl methacrylate), PMMA, poly(dimethylaminoethyl methacrylate), PDMAEMA, and poly(2‐hydroxyethyl methacrylate), PHEMA. A2B miktoarm stars, A being PεCL or poly(δ‐valerolactone), PδVL and B PS were also prepared from ω,ω‐dihydroxy‐PS, synthesized from ω‐Br‐PS and serinol, by ROP of εCL or δVL. All polymers were characterized by size exclusion chromatography, 1H NMR spectroscopy, and membrane osmometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5164–5181, 2007  相似文献   

12.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

13.
Very well‐controlled polymerizations of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and 2‐(diethylamino)ethyl methacrylate (DEAEMA) in aqueous and methanolic solutions via atom transfer radical polymerization (ATRP) at ambient temperature were demonstrated. Poly(DMAEMA) and poly(DEAEMA) of low polydispersity index (PDI) of ~1.07 were obtained using the p‐toluenesulfonyl chloride/CuCl/1,1,4,7,10,10‐hexamethyl‐triethylenetetramine (p‐TsCl/CuCl/HMTETA) system. Excellent control of polymerization was achieved even in pure methanol. This is in contrast with the very poor control of DMAEMA ATRP in methanol reported previously using a different intiator/catalyst/ligand system. The initiator p‐TsCl underwent hydrolysis reaction in aqueous methanolic solutions with a second‐order rate constant of 6.1 × 10?4 dm3 mol?1 s?1 at 25 °C. Both poly(DMAEMA) and poly(DEAEMA) retained almost full chlorine‐functionization at the chain ends. Well‐defined block copolymers of DEAEMA and DMAEMA were successfully obtained by starting with either macroinitiators of DEAEMA or DMAEMA. Other well‐defined diblock copolymers could be prepared using these macroinitiators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5161–5169, 2004  相似文献   

14.
This work focused on the preparation and the aqueous solution properties of hybrid polymeric micelles consisting of a hydrophobic poly(epsilon-caprolactone) (PCL) core and a mixed shell of hydrophilic poly(ethylene oxide) (PEO) and pH-sensitive poly(2-vinylpyridine) (P2VP). The hybrid micelles were successfully prepared by the rapid addition of acidic water to a binary solution of PCL(34)-b-PEO(114) and PCL(32)-b-P2VP(52) diblock copolymers in N,N-dimethylformamide. These micelles were pH-responsive as result of the pH-dependent ionization of the P2VP block. The impact of pH on the self-assembly of the binary mixture of diblocks-thus on the composition, shape, size and surface properties of the micelles-was studied by a variety of experimental techniques, i.e., dynamic and static light scattering, transmission electron microscopy, Zeta potential, fluorescence spectroscopy and complement hemolytic 50 test.  相似文献   

15.
大分子单体通过两种可控聚合方法, 即开环易位聚合(ROMP)和原子转移自由基聚合(ATRP)的联用, 合成一种新型两亲性接枝聚合物刷. 具有高环张力的降冰片烯单侧链大分子单体norbornene-graft-poly(ε-caprolactone)/Br (PCL- NBE-Br)首先进行ROMP反应, 生成聚合物主链, 每个单体单元上含有一条PCL链和一个溴官能团; 然后用含溴的ROMP聚合物poly(norbornene)-graft-poly(ε-caprolactone)/Br (PCL-PNBE-Br)作为大分子引发剂引发单体2-(dimethyl- amino)ethyl methacrylate)的ATRP反应, 生成结构明确的高密度两亲性接枝聚合物刷poly(norbornene)-graft-poly(ε- caprolactone)/poly(2-(dimethylamino)ethyl methacrylate) (PCL-PNBE-PDMAEMA), 其主链每个单体单元上均含有一条疏水性PCL接枝链和一条亲水性PDMAEMA接枝链. 最后, 研究此类高密度两亲性接枝聚合物刷的自组装行为, 用动态激光光散射(DLS)研究其在混合溶剂(THF/H2O)中的胶束行为, 考察胶束溶液的浓度以及不同长度的亲水性接枝链对胶束尺寸的影响; 利用透射电镜(TEM)观察胶束为球形, 具有类似线团或草莓状的形态.  相似文献   

16.
The synthesis, characterization and the self-assembly process of a novel biodegradable block copolymer containing a poly(epsilon-caprolactone), PCL, central block and three poly(N-vinyl-2-pyrrolidone), PVP, arms are reported. Three samples with different amounts of PVP were investigated. The copolymers were characterized by FTIR spectroscopy, (1)H NMR and viscosity measurements. The composition and the molecular weights of the block copolymers were established using size exclusion chromatography SEC and (1)H NMR. Micelle formation by these copolymers was monitored by using the vibrational fine structure of pyrene monomer fluorescence and the critical aggregation concentrations, cac, of the copolymers in aqueous solution were determined using sigmoid Boltzmann-type fitting of the fluorescence data. Dynamic light scattering measurements showed a bimodal size distribution for the copolymers in solution, indicating that the micellization is an intermolecular process. Partitioning coefficients of pyrene between copolymer micelles and water were also determined and increase in magnitude with increasing epsilon-caprolactone content of the copolymer.  相似文献   

17.
Block copolymers consisting of poly(solketal acrylate) and poly(l-lactide) were synthesized by combination of atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) technique. Block copolymerization has been done by two different pathways, simultaneously and sequentially by using a dual functional initiator. Well defined block copolymers were obtained by sequential block copolymerization first implementing ROP of l-lactide followed by ATRP of solketal acrylate. After hydrolysis of the solketal acrylate segments hydrophilic poly(2,3-dihydroxypropyl acrylate) blocks were obtained. The amphiphilic block copolymers were able to self-organize in aqueous solution. Aggregation behavior was studied by means of dynamic and static light scattering. Time dependent enzymatic and hydrolytic degradation of the poly(l-lactide) cores was detected by dynamic light scattering. If enzymatic solutions were used the degradation process proceeded faster and was completed within 4000 min.  相似文献   

18.
Well-defined amphiphilic seven-arm star triblock copolymers containing hydrophobic crystalline poly(ε-caprolactone)(PCL) blocks, hydrophobic non-crystalline poly(tert-butyl acrylate)(PtBA) blocks and hydrophilic poly(ethylene glycol)(PEG) blocks were precisely synthesized by a combination of ring-opening polymerization(ROP), atom transfer radical polymerization(ATRP) and “click” reaction. Such star copolymers could self-assemble into “core-shell-corona” micelles and “multi-layer” vesicles depending on the fraction of each block. Meanwhile, the selective hydrolysis of middle PtBA blocks into the poly(acrylic acid)(PAA) blocks allowed the star block copolymers to further change their morphologies of aqueous aggregates in response to pH values.  相似文献   

19.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

20.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号