首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The data of several experiments on the long-range propagation of explosion-generated and tonal sound signals are analyzed. The experiments are performed by the Acoustics Institute in the Mediterranean Sea with a fully developed sound channel. A substantial difference is observed for the propagation conditions in the western and eastern parts of the sea. This difference concerns the vertical sound speed profiles, the time structures of the sound field in the underwater sound channel, the duration of the explosion-generated signal, and the positions of the convergence zones. The experiment is compared with calculations. The observed difference in the experimental and calculated positions of the first convergence zone is explained by the imperfection of the relation used to recalculate the salinity, water temperature, and hydrostatic pressure to the sound speed. In spite of substantial difference in the propagation conditions on two 600-km paths, the experimental low-frequency attenuation coefficients on these paths (and on some shorter ones) agree well with each other for the frequency band of several kilohertz. The data are also close to those published for another 600-km path. All the paths mentioned run in different parts of the Mediterranean Sea. The frequency dependence of sound attenuation (absorption) can be well described by the relation that accounts for the absorption caused by the boron present in the sea water.  相似文献   

2.
Experimental data on the long-range propagation of explosion-generated sound signals in the shallow-water northern part of the Sea of Okhotsk are analyzed. The propagation conditions in this region are characterized by a fully-developed underwater sound channel that captures the rays crossing the channel axis at angles lower than 3°. The experimental data reveal a small increase in the duration of the sound signal in proportion to the range with the proportionality factor lower than 0.00025 s/km. The frequency dependence of attenuation exhibits a pronounced minimum whose position on the frequency axis is close to the critical frequency of the first “water” mode (about 160 Hz). The increase in the attenuation coefficient at lower frequencies is confirmed by the field calculations performed with the wave-field computer code and is explained by the sound energy loss in the bottom sediments. At frequencies higher than 200 Hz, as in the Baltic Sea, the most probable reason for the attenuation to exceed the absorption in sea water is sound scattering by internal waves.  相似文献   

3.
The data obtained from a set of experiments on the long-range, low-frequency (<5 kHz) sound propagation in the central region of the Baltic Sea are analyzed. The experiments were carried out in the summer season, with a fully developed underwater sound channel. Experimental data on the sound attenuation are presented. A significant excess of the attenuation coefficients over the predicted absorption coefficients is obtained. The quantitative estimates indicate that the sound scattering by internal waves is the most probable mechanism responsible for the observed excessive sound attenuation. The frequency dependence of the attenuation coefficient exhibits a minimum whose position on the frequency axis at the beginning of the summer season noticeably differs from that at the end of summer. The analysis of the propagation conditions allows one to relate the position of this minimum to the critical frequency of the water modes. In addition to the intensity parameters of the sound field, the formation of the time structure of explosion-generated signals propagating in the Baltic underwater sound channel is considered for the case of the sound propagation along the 360-km path crossing the Gotland Hollow. The specific role of the bottom waves in the time structure formation at short distances from the sound source is demonstrated.  相似文献   

4.
On the basis of the experimental data on the sound field formation in the Norwegian Sea, the year-to-year variability of the propagation conditions is estimated. A comparative analysis is performed for the data obtained from two long-range-propagation experiments with explosion-generated signals. The experiments were carried out in summertime (August) on a path crossing the central deep-water part of the Norwegian Sea and were separated in time by a period of four years. Noticeable changes are found to occur in the sound speed fields between the two experiments. These changes are related to a change in the distance between the cores of cold waters (observed in the region of the Norwegian Basin) and warm waters (observed in the region of the Lofoten Basin). According to calculations, the observed changes in the sound speed structure can lead to considerable changes in the propagation anomaly and in the range dependence of the sound field decay. In spite of the noticeable difference in the propagation conditions, the experimental coefficients of low-frequency attenuation differ little for the two experiments.  相似文献   

5.
Experimental data obtained in the kilohertz frequency band for the sound propagation in the subsurface channel formed by the wind-caused mixing of subsurface waters are discussed. The data were obtained in different years in the northeastern region of the Atlantic Ocean, where the subsurface waters down to the depths of 40–70 m are mixed by both wind waves and the swell that arrives from distant ocean areas. The hydrological conditions in the subsurface waters of this region are characterized by a good reproducibility. The spatial structure of the sound field and the attenuation of sound propagating in the subsurface channel are analyzed. The origin of the additional attenuation (in comparison with the absorption in sea water) is discussed. The data of our experiments are compared with those obtained by other experimenters and with the calculations performed using the computer code by Avilov. The necessity of improving the computer codes to allow for the scattering of sound beyond the channel under the influence of the swell, whose parameters are unrelated to the wind regime at the experimental site, is emphasized.  相似文献   

6.
More than half a century has passed since the discovery of the underwater sound channel. In this period of time, the Acoustics Institute has performed a number of experiments on the long-range propagation of explosion-generated sound signals in different ocean regions. These experiments included the studies of such phenomena as the frequency-dependent sound attenuation in the sea medium and the sound field formation in the underwater sound channel. A combined analysis of the data obtained revealed considerable regional differences in the time structure of the sound field. In the experiments, a number of phenomena were observed that required special explanation and additional theoretical treatment. These phenomena include: the unexpectedly high attenuation of low-frequency sound in the sea medium, the “spectrum-analyzing” properties of the underwater sound channel in the Black Sea, the existence of the reverberation forerunner (the so-called prereverberation), the frequency-independent deviation of the phase shift from the usual value of 90° between the signals in classical quartets differing in the number of contacts with the caustic, the splitting of individual signals into quartets, and the transformation of these quartets into groups of nearly irresolvable signals at long distances. The most interesting data of the aforementioned studies are described in the present paper.  相似文献   

7.
A phenomenological model of long-range reverberation in a shallow sea is developed to describe the statistical characteristics and interference of the sound field scattered by bottom inhomogeneities. Experimental data on the scattering of low-frequency sound by the sea bottom are presented for a shallow-water region of the Barents Sea. The results of a numerical simulation of the low-frequency bottom reverberation in a multimode waveguide are described. The simulation is based on experimentally measured values of backscattering strength.  相似文献   

8.
Results of experimental measurements of acoustic cavitation thresholds are presented for the waters of the Atlantic Ocean, Pacific Ocean, Indian Ocean, Arctic Ocean, and some other parts of the World Ocean, including the Arabian Sea, Baltic Sea, East Siberian Sea, North Sea, Philippine Sea, Black Sea, Sea of Japan, Sea of Okhotsk, and South China Sea. The measurements were carried out by many oceanic expeditions between 1963 and 1987. General laws governing the variations in the cavitation strength of sea water over the World Ocean are revealed.  相似文献   

9.
The combined effect of multiple scattering by random inhomogeneities of a waveguide and bottomcaused sound absorption is known to be a fundamental factor that governs the formation of the sound field in a shallow sea [1, 2]. A number of publications [2–6] present statistical analyses of the fluctuation phenomena that accompany the sound propagation in shallow sea regions. In these publications, most attention is paid to studying the evolution of the intensities of normal waves under the effect of scattering by the random field of internal waves. It is shown that in natural conditions, in addition to the inhomogeneities of the water column, one should take into account the irregular boundaries of the sound channel, which can also affect the correlation characteristics of the sound field. In this paper, we present experimental data on the vertical coherence of the sound field on a fixed path in the Barents Sea. We also compare the experimental data with theoretical calculations based on a model of sound scattering by the rough sea surface.  相似文献   

10.
Experimental data on the long-range propagation of explosion-generated signals are analyzed. The experiments were performed in the northeastern Atlantic under the conditions of a two-axis underwater sound channel. The sound field in the upper channel was governed by the vertical redistribution of the ray structure and sound energy under the influence of a smooth increase in the depth of the channel’s axis along the propagation path. The explosions were produced in the upper sound channel at a depth of 200 m, which was constant along the path. The time structure of the sound field is analyzed for the upper channel (a reception depth of 200 m) and for deeper layers lying somewhat below the boundary between the upper and lower sound channels (a reception depth of 1200 m). The deviation of the decay law obtained for the sound field level in the upper channel from the cylindrical law is used to estimate the attenuation coefficient. The low-frequency (several hundreds of hertz) attenuation coefficients experimentally determined with allowance for the sound field redistribution agree well with the calculated sound absorption in seawater. The attenuation coefficients determined by the differential method also agree well with the absorption calculated by the formulas proposed earlier. The analysis of the time structure of the sound field near the boundary between the upper and lower channels reveals a permanent insonification of this horizon by weak water-path signals propagating with the velocity typical of the signals traveling in the upper channel.  相似文献   

11.
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26–182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.  相似文献   

12.
A possibility of determining the mode composition of the sound field in a shallow sea is considered. The procedure involves the transmission of a short pulse by a point source and the subsequent reception of this pulse at a single point. It is shown that the problem can be solved by using linearly frequency-modulated broadband pulses at relatively short distances (about 20 km), where the attenuation of the signal is rather weak. To take into account the intramode dispersion, it is proposed to use the value of the dispersion typical of a perfect Pekeris waveguide with a stiff bottom. With the use of the calculations and the experimental data obtained in the Barents Sea, it is shown that the proposed approximation is sufficient to determine the mode composition of the sound field.  相似文献   

13.
The results of a computer modeling of sound propagation in the ocean with fine-structured inhomogeneities are presented. The modeling was performed using a wave code based on the wide-angle approximation, which allows one to estimate the effects of sound field perturbations. These effects include the insonification of the geometric shadow zones and the abnormal attenuation of low-frequency sound in the course of its propagation in an oceanic waveguide. Calculations clearly demonstrate that the fine-structured inhomogeneities of the sound velocity considerably affect the sound propagation in the ocean.  相似文献   

14.
The propagation and absorption of high-frequency sound in the isotropic phase of cholesteryl miristate is studied in a wide frequency range using the data of both Brillouin spectroscopy and acoustooptic measurements. The parameters of the relaxation process associated with the volume viscosity relaxation are calculated using the experimental data on the velocity and absorption of sound.  相似文献   

15.
郭晓乐  杨坤德  马远良 《物理学报》2015,64(17):174302-174302
在浅海环境中, 海底环境参数对声传播有着重要的影响. 由于利用单个宽带声源进行海底参数反演时, 随着距离的增大, 误差变大, 本文提出利用warping变换对在浅海波导中传播的, 不同距离上的两个宽带爆炸声源进行简正波的有效分离, 实现了宽带爆炸声源的远距离海底参数反演. 采用全局寻优遗传算法对提取出的模态频散到达时间差与理论计算的模态频散到达时间差进行匹配处理, 并结合随距离连续变化的声传播损失, 实现了利用单水听器进行海底参数的反演. 实验结果表明: 运用反演出的海底参数提取模态频散时间差和实测数据提取出的模态频散时间差吻合得较好; 而通过传播损失反演得到的海底衰减系数与频率呈指数关系. 最后, 对反演结果进行了后验概率分析, 并将本组爆炸声源的反演结果用于另一组不同距离上爆炸声源时仍然有效, 来评价反演结果的有效性.  相似文献   

16.
The sound attenuation and dispersion in saturated gas–vapor–droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air–water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.  相似文献   

17.
暗声学超材料研究   总被引:6,自引:0,他引:6  
梅军  马冠聪  杨旻  杨志宇  温维佳  沈平 《物理》2012,41(7):425-433
由于普通材料的固有耗散在低频区域的微弱性,长久以来,低频声波的衰减一直都是一个颇具挑战性的任务.为了能够在100—1000Hz范围内完全吸收某些频率的低频声波,文章作者设计了一种薄膜型的暗声学超材料样品:它是由在弹性薄膜上镶嵌有一些非对称性的硬质金属片而制成.实验表明,该样品在低频区域几乎能够百分之百地吸收声波,而在共振吸收频率处,空气中的声波波长要比薄膜的厚度大3个数量级以上.当共振发生时,硬质金属片的"拍动"导致很大的弹性曲率能量聚集在金属片的边界附近.由于薄膜的拍动模式与声波的辐射模式仅存在微弱的耦合作用,而弹性薄膜的整体能量密度又比入射声波的能量密度大2—3个数量级,该样品本质上是一个开放的共振腔,这也是它能够高效地吸收低频声波的原因所在.  相似文献   

18.
周期多孔板的面内振动衰减域及其优化   总被引:1,自引:0,他引:1       下载免费PDF全文
针对Bragg散射型周期多孔板难以实现较低起始频率并维持较宽衰减域的问题,优化设计了一种含菱形孔的周期多孔板。采用有限元法结合周期边界条件,并运用COMSOL对周期多孔板的面内弹性波频散关系进行计算,通过ANSYS模拟有限尺寸周期多孔板的频率响应,将周期多孔板悬吊进行了正弦波激励的振动试验。研究结果表明,含菱形孔的周期多孔板相比于含圆形和六边形孔的周期多孔板具有更宽的衰减域;材料属性对衰减域影响较大,丁晴橡胶和硅橡胶易于获得低频衰减域;孔隙率的增大有利于获得低频宽带的衰减域;增大菱形孔水平夹角能获得较宽的衰减域。对衰减域的形成机理分析发现,含菱形孔的周期多孔板同时具有Bragg散射型和局域共振型声子晶体的特性,表明两种衰减域机理具有内在的联系。优化设计的周期多孔板存在一条5281.76 Hz至8824.30 Hz的完全衰减域,经过至少2个周期,振动即得到较明显衰减。数值和试验得到的衰减区具有较高的一致性。该研究为减振降噪板的开发提供了新的思路,且由于制作过程便捷,在改善建筑声环境中具有潜在的应用前景。   相似文献   

19.
浅海周期起伏海底环境下的声传播   总被引:1,自引:0,他引:1       下载免费PDF全文
海底粗糙对水下声传播及水声探测等应用具有重要影响.利用黄海夏季典型海洋环境,分析了同时存在海底周期起伏和强温跃层条件下的声传播特性,结果表明:由于海底周期起伏的存在,对于低频(<1 kHz)、近程(10 km)的声信号,传播损失可增大5—30 dB.总结了声传播损失及脉冲到达结构随声源深度、海底起伏周期及起伏高度等因素变化的规律.当海底起伏周期不变时,起伏高度越大引起的异常声传播的影响随之变大;当起伏高度不变时,随着起伏周期变大,其对声传播的影响逐渐变小.用射线理论分析了其影响机理,由于海底周期起伏改变了声波与海底的入射和反射角度,使得原本小掠射角入射到海底的声线变为大掠射角,导致海底的反射损失增大;另一方面,声线反射角度的改变会使得原本可以到达接收点的声能量,由于与海底作用次数增加或变为反向传播而大幅度衰减.在浅海负跃层环境下,声源位于跃层上比位于跃层下对声传播影响更大.周期起伏海底对脉冲声传播的影响表现在引起不同角度的声线(或简正波号数)之间的能量发生转化,一些大角度声线能量衰减加大,多途结构变少.多途结构到达时间及相对幅度的变化进而影响声场的频谱,会使得基于匹配场定位的方法性能受到影响.所以,声呐在实际浅海环境中应用时,应对起伏海底的影响予以重视.此外,研究结果对海底地形测绘空间精度的提高也具有重要参考意义.  相似文献   

20.
In this work, a blue gallium nitride(GaN) micro-light-emitting-diode(micro-LED)-based underwater wireless optical communication(UWOC) system was built, and UWOCs with varied Maalox, chlorophyll, and sea salt concentrations were studied. Data transmission performance of the UWOC and the influence of light attenuation were investigated systematically. Maximum data transmission rates at the distance of 2.3 m were 933, 800, 910,and 790 Mbps for experimental conditions with no impurity, 200.48 mg/m~3 Maalox, 12.07 mg/m~3 chlorophyll,and 5 kg/m~3 sea salt, respectively, much higher than previously reported systems with commercial LEDs. It was found that increasing chlorophyll, Maalox, and sea salt concentrations in water resulted in an increase of light attenuation, which led to the performance degradation of the UWOC. Further analysis suggests two light attenuation mechanisms, e.g., absorption by chlorophyll and scattering by Maalox, are responsible for the decrease of maximum data rates and the increase of bit error rates. Based on the absorption and scattering models,excellent fitting to the experimental attenuation coefficient can be achieved, and light attenuation by absorption and scattering at different wavelengths was also investigated. We believe this work is instructive apply UWOC for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号