首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we define multisections of intervals that yield sharp lower bounds in branch-and-bound type methods for interval global optimization. A so called 'generalized kite', defined for differentiable univariate functions, is built simultaneously with linear boundary forms and suitably chosen centered forms. Proofs for existence and uniqueness of optimal cuts are given. The method described may be used either as an accelerating device or in a global optimization algorithm with an efficient pruning effect. A more general principle for decomposition of boxes is suggested.  相似文献   

2.
本文利用区间工具及目标函数的特殊导数,给出一个非光滑总体优化的区间算法,该算法提供了目标函数总体极小值及总体极小点的取值界限(在给定的精度范围内)。我们也将算法推广到并行计算中。数值实验表明本文方法是可靠和有效的。  相似文献   

3.
在区间分析的基础上,对一类不等式约束的全局优化问题,给出几种新的不含全局极小的区域删除准则,提出了一个求不等式约束全局优化问题的区间算法.数值结果表明算法是可行和有效的.  相似文献   

4.
New Subinterval Selection Criteria for Interval Global Optimization   总被引:3,自引:0,他引:3  
The theoretical convergence properties of interval global optimization algorithms that select the next subinterval to be subdivided according to a new class of interval selection criteria are investigated. The latter are based on variants of the RejectIndex: , a recently thoroughly studied indicator, that can quite reliably show which subinterval is close to a global minimizer point. Extensive numerical tests on 40 problems confirm that substantial improvements can be achieved both on simple and sophisticated algorithms by the new method (utilizing the known minimum value), and that these improvements are larger when hard problems are to be solved.  相似文献   

5.
This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.  相似文献   

6.
This paper investigates the properties of the inclusion functions on subintervals while a Branch-and-Bound algorithm is solving global optimization problems. It has been found that the relative place of the global minimum value within the inclusion interval of the inclusion function of the objective function at the actual interval mostly indicates whether the given interval is close to minimizer point. This information is used in a heuristic interval rejection rule that can save a big amount of computation. Illustrative examples are discussed and a numerical study completes the investigation.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
In recent years, it has been shown that strategies based on an interval-Newton approach can be used to reliably solve a variety of nonlinear equation solving and optimization problems in chemical process engineering, including problems in parameter estimation and in the computation of phase behavior. These strategies provide a mathematical and computational guarantee either that all solutions have been located in an equation solving problem or that the global optimum has been found in an optimization problem. The primary drawback to this approach is the potentially high computational cost. In this paper, we consider strategies for bounding the solution set of the linear interval equation system that must be solved in the context of the interval-Newton method. Recent preconditioning techniques for this purpose are reviewed, and a new bounding approach based on the use of linear programming (LP) techniques is presented. Using this approach it is possible to determine the desired bounds exactly (within round out), leading to significant overall improvements in computational efficiency. These techniques will be demonstrated using several global optimization problems, with focus on problems arising in chemical engineering, including parameter estimation and molecular modeling. These problems range in size from under ten variables to over two hundred, and are solved deterministically using the interval methodology.  相似文献   

8.
Global Interval Methods for Local Nonsmooth Optimization   总被引:4,自引:0,他引:4  
An interval method for determining local solutions of nonsmooth unconstrained optimization problems is discussed. The objective function is assumed to be locally Lipschitz and to have appropriate interval inclusions. The method consists of two parts, a local search and a global continuation and termination. The local search consists of a globally convergent descent algorithm showing similarities to -bundle methods. While -bundle methods use polytopes as inner approximations of the -subdifferentials, which are the main tools of almost all bundle concepts, our method uses axes parallel boxes as outer approximations of the -subdifferentials. The boxes are determined almost automatically with inclusion techniques of interval arithmetic. The dimension of the boxes is equal to the dimension of the problem and remains constant during the whole computation. The application of boxes does not suffer from the necessity to invest methodical and computational efforts to adapt the polytopes to the latest state of the computation as well as to simplify them when the number of vertices becomes too large, as is the case with the polytopes. The second part of the method applies interval techniques of global optimization to the approximative local solution obtained from the search of the first part in order to determine guaranteed error bounds or to improve the solution if necessary. We present prototype algorithms for both parts of the method as well as a complete convergence theory for them and demonstrate how outer approximations can be obtained.  相似文献   

9.
A new pruning method for interval branch and bound algorithms is presented. In reliable global optimization methods there are several approaches to make the algorithms faster. In minimization problems, interval B&B methods use a good upper bound of the function at the global minimum and good lower bounds of the function at the subproblems to discard most of them, but they need efficient pruning methods to discard regions of the subproblems that do not contain global minimizer points. The new pruning method presented here is based on the application of derivative information from the Baumann point. Numerical results were obtained by incorporating this new technique into a basic Interval B&B Algorithm in order to evaluate the achieved improvements. This work has been supported by the Ministry of Education and Science of Spain through grants TIC 2002-00228, TIN2005-00447, and research project SEJ2005-06273 and by the Integral Action between Spain and Hungary by grant HH2004-0014. Boglárka Tóth: On leave from the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and the University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary.  相似文献   

10.
求非光滑全局优化问题的区间算法   总被引:2,自引:0,他引:2  
本文通过区间工具和目标函数的特殊导数提出了一个非光滑全局优化问题的区间算法,所提出的方法能给出问题的全部全局极小点及全局极小值,理论分析和数值结构均表明本文方法是有效的。  相似文献   

11.
We have investigated variants of interval branch-and-bound algorithms for global optimization where the bisection step was substituted by the subdivision of the current, actual interval into many subintervals in a single iteration step. The results are published in two papers, the first one contains the theoretical investigations on the convergence properties. An extensive numerical study indicates that multisection can substantially improve the efficiency of interval global optimization procedures, and multisection seems to be indispensable in solving hard global optimization problems in a reliable way.  相似文献   

12.
Natural basic concepts in multiple-objective optimization lead to difficult multiextremal global optimization problems. Examples include detection of efficient points when nonconvexities occur, and optimization of a linear function over the efficient set in the convex (even linear) case. Assuming that a utility function exists allows one to replace in general the multiple-objective program by a single, nonconvex optimization problem, which amounts to a minimization over the efficient set when the utility function is increasing. A new algorithm is discussed for this utility function program which, under natural mild conditions, converges to an -approximate global solution in a finite number of iterations. Applications include linear, convex, indefinite quadratic, Lipschitz, and d.c. objectives and constraints.  相似文献   

13.
In this paper, we use the Ehlich-Zeller-Gärtel inequality to derive an algorithm for finding the global minima of polynomials over hyperrectangles as well as to provide a bounding method for the branch-and-bound algorithm. The latter application of the inequality results in an improved algorithm which gives simultaneously a decreasing upper bound and an increasing lower bound for the global minimum at each iteration. The algorithm can be used also to find the Lipschitz constant of a polynomial.  相似文献   

14.
Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem   总被引:7,自引:0,他引:7  
This article presents a branch-and-bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm economizes the required computations by conducting the branch-and-bound search in p, rather than in n, where p is the number of ratios in the objective function of problem (P) and n is the number of decision variables in problem (P). To implement the algorithm, the main computations involve solving a sequence of convex programming problems for which standard algorithms are available.  相似文献   

15.
一类非光滑总体极值的区间算法   总被引:1,自引:1,他引:0  
本文利用区间分析知识 ,构造了一类 n维非光滑函数总体极值的区间算法 ,理论分析和实例计算均表明本文算法安全可靠 ;能求出全部总体极小点 ;收敛速度也比以前方法[1] 明显加快  相似文献   

16.
In this article, we introduce a global optimization algorithm that integrates the basic idea of interval branch and bound, and new local sampling strategies along with an efficient data structure. Also included in the algorithm are procedures that handle constraints. The algorithm is shown to be able to find all the global optimal solutions under mild conditions. It can be used to solve various optimization problems. The local sampling (even if done stochastically) is used only to speed up the convergence and does not affect the fact that a complete search is done. Results on several examples of various dimensions ranging from 1 to 100 are also presented to illustrate numerical performance of the algorithm along with comparison with another interval method without the new local sampling and several noninterval methods. The new algorithm is seen as the best performer among those tested for solving multi-dimensional problems.  相似文献   

17.
This paper addresses the problem of global optimization by means of a monotonic transformation. With an observation on global optimality of functions under such a transformation, we show that a simple and effective algorithm can be derived to search within possible regions containing the global optima. Numerical experiments are performed to compare this algorithm with one that does not incorporate transformed information using several benchmark problems. These results are also compared to best known global search algorithms in the literature. In addition, the algorithm is shown to be useful for several neural network learning problems, which possess much larger parameter spaces.  相似文献   

18.
Global Optimization Requires Global Information   总被引:5,自引:0,他引:5  
There are many global optimization algorithms which do not use global information. We broaden previous results, showing limitations on such algorithms, even if allowed to run forever. We show that deterministic algorithms must sample a dense set to find the global optimum value and can never be guaranteed to converge only to global optimizers. Further, analogous results show that introducing a stochastic element does not overcome these limitations. An example is simulated annealing in practice. Our results show that there are functions for which the probability of success is arbitrarily small.  相似文献   

19.
A directed acyclic graph (DAG) representation of optimization problems represents each variable, each operation, and each constraint in the problem formulation by a node of the DAG, with edges representing the flow of the computation. Using bounds on ranges of intermediate results, represented as weights on the nodes and a suitable mix of forward and backward evaluation, it is possible to give efficient implementations of interval evaluation and automatic differentiation. It is shown how to combine this with constraint propagation techniques to produce narrower interval derivatives and slopes than those provided by using only interval automatic differentiation preceded by constraint propagation. The implementation is based on earlier work by L.V. Kolev, (1997), Reliable Comput., 3, 83–93 on optimal slopes and by C. Bliek, (1992), Computer Methods for Design Automation, PhD Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology on backward slope evaluation. Care is taken to ensure that rounding errors are treated correctly. Interval techniques are presented for computing from the DAG useful redundant constraints, in particular linear underestimators for the objective function, a constraint, or a Lagrangian. The linear underestimators can be found either by slope computations, or by recursive backward underestimation. For sufficiently sparse problems the work is proportional to the number of operations in the calculation of the objective function (resp. the Lagrangian). Mathematics Subject Classification (2000). primary 65G40, secondary 90C26  相似文献   

20.
Convex relaxations can be used to obtain lower bounds on the optimal objective function value of nonconvex quadratically constrained quadratic programs. However, for some problems, significantly better bounds can be obtained by minimizing the restricted Lagrangian function for a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm compares favorably to the Reformulation–Linearization Technique for problems with a favorable structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号