首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurements of turbulent flow in a channel at low Reynolds numbers   总被引:1,自引:0,他引:1  
Normal and streamwise components of the velocity fields of turbulent flow in a channel at low Reynolds numbers have been measured with laser-Doppler techniques. The experiments duplicate the conditions used in current direct numerical simulations of channel flow, and good, but not exact, agreement is found for single-point moments through fourth order. In order to eliminate LDV velocity bias and to measure velocity spectra, the mean time interval between LDV signals was adjusted to be much smaller than the smallest turbulence time scale. Spectra of the streamwise and normal components of velocity at locations spanning the channel are presented.  相似文献   

2.
3.
The possibility of transverse galloping of a square cylinder at low Reynolds numbers (Re≤200, so that the flow is presumably laminar) is analysed. Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to fluid forces, which are described by using the quasi-steady hypothesis (time-averaged data are extracted from previous numerical simulations). Approximate solutions are obtained by means of the method of Krylov-Bogoliubov, with two major conclusions: (i) a square cylinder cannot gallop below a Reynolds number of 159 and (ii) in the range 159≤Re≤200 the response exhibits no hysteresis.  相似文献   

4.
5.
The interaction between a laminar boundary layer and an open cavity is investigated experimentally for medium range Reynolds numbers. Flow visualizations are carried out for three different observation directions in order to understand the spatial development of dynamical structures. In particular, synchronized visualizations in two parallel planes picture the transverse development of the flow. The study is conducted by changing the cavity aspect ratio, the Reynolds number and therefore the flow patterns inside the cavity. The issue is to emphasize the 3-D development of the flow. In particular, we show that the dynamical structures are not due to secondary shear layer instabilities.  相似文献   

6.
The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.  相似文献   

7.
An experimental study was conducted to investigate the effect of bottom wall heating on the flow structure inside a horizontal square channel at low Reynolds numbers (Re) and high Grashof numbers (Gr). The flow field was found to be complex and three-dimensional due to the interactions of buoyancy-induced rising plumes of warm fluid, falling parcels of cold fluid and the shear flow. The mean streamwise velocity profiles were altered by bottom wall heating; and back flow was induced in the upper half of the channel when Gr/Re2 > 55. The bottom wall temperatures were found to have more significant influence on the turbulent velocity magnitudes than the flow rate. The Reynolds stress became negative in the channel core region indicating the momentum transfer from the turbulent velocity field to the buoyancy field. The POD analysis revealed the presence of convective cells primarily in the lower half of the channel.  相似文献   

8.
Free jets, and jets with tubular confinements, are investigated in the jet Reynolds number regime 80 Rej 1000 being of interest for micro-jet pumps, among other applications. For issuing the jets, conventional (single-hole) nozzles as well as dual-hole nozzles of a particular design are used. Both flow visualization and LDA measurement indicate that, in agreement with previous findings, the jets issuing from conventional nozzles remain laminar up to large distances from the orifice. Thus there is but little entrainment of ambient fluid, and the performance of conventional nozzles in micro-jet pumps is rather poor. The dual-hole nozzles, on the other hand, are found to enforce transition to turbulent flow near the orifices. As a result, the entrainment rate is considerably increased, and the performance of jet pumps is improved when the dual-hole nozzles are applied. The experimental data are found to be in fair agreement with predictions based on mass and momentum balances.  相似文献   

9.
10.
 This paper describes the three-dimensional flow structure in grooved channels with different cavity lengths at intermediate Reynolds numbers. For steady flow, the three-dimensional effects are dominant near the side walls of the channel. However, after the onset of self-sustained oscillatory flow due to Tollmien–Schlichting waves as the primary instability, a secondary instability produces a three-dimensional flow with Taylor–Geortler-like vortical structure, at the bottom of the groove. This trend becomes more significant as the cavity length increases. Furthermore, the reason for three-dimensional flow is discussed using additional numerical analysis, and it is confirmed that the source of three-dimensional instability is the groove vortices due to the presence of side walls, rather than the channel traveling wave. Received: 7 September 1999/Accepted: 11 November 2000  相似文献   

11.
An unsteady two-dimensional numerical simulation is performed to investigate the forced convection heat transfer for flow past a long heated equilateral triangular cylinder in an unconfined medium for the low Reynolds number laminar regime. The Reynolds number considered in this study ranges from 50 to 250 with three different values of Prandtl number (Pr?=?0.71, 7 and 100). Fictitious confining boundaries are chosen on the lateral sides of the computational domain that makes the blockage ratio β?=?5?% in order to make the problem computationally feasible. An unstructured triangular mesh is used for the computational domain discretization and the simulation is carried out with the commercial CFD solver Fluent. The flow and heat transfer characteristics are analyzed with the streamline and isotherm patterns at various Reynolds numbers. The dimensionless frequency of vortex shedding (Strouhal number), drag coefficient and Nusselt numbers are presented and discussed. The results obtained are in good agreement with the available results in the literature.  相似文献   

12.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

13.
The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic optimization. In this letter, the solution of unsteady adjoint equations is accelerated by dynamic mode decomposition(DMD). The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system. Thereafter, DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching. First-order zero frequency mode is selected to accelera...  相似文献   

14.
15.
We visualized the wake structure of circular disks falling vertically in quiescent water.The evolution of the wake was shown to be similar to the flow patterns behind a fixed disk.The Reynolds number,Re = Ud/ν,is in the range of 40 200.With the ascension of Reynolds numbers,a regular bifurcation occurred at the first critical Reynolds number Re c 1,leading to a transition from an axisymmetric wake structure to a plane symmetric one;A Hopf bifurcation took place at the second critical Reynolds number Re c 2,as the wake structure became unsteady.Plane symmetry of the wake structure was first lost as periodic vortex shedding appeared,but recovered at higher Reynolds number.The difference between the two critical Reynolds numbers was found to be shape-dependent,as we compared our results for thin discs with those for other falling bodies,such as spheres and cones.This observation could be understood in terms of the instability mechanism of the vortical structure.  相似文献   

16.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Model-based feedback control of vortex shedding at low Reynolds numbers is considered. The feedback signal is provided by velocity measurements in the wake, and actuation is achieved using blowing and suction on the cylinder’s surface. Using two-dimensional direct numerical simulations and reduced-order modelling techniques, linear models of the wake are formed at Reynolds numbers between 45 and 110. These models are used to design feedback controllers using \(\mathcal {H}_\infty \) loop-shaping. Complete suppression of shedding is demonstrated up to Re \(=\) 110—both for a single-sensor arrangement and for a three-sensor arrangement. The robustness of the feedback controllers is also investigated by applying them over a range of off-design Reynolds numbers, and good robustness properties are seen. It is also observed that it becomes increasingly difficult to achieve acceptable control performance—measured in a suitable way—as Reynolds number increases.  相似文献   

18.
Within the framework of the Lagrangian approach a method for describing a wave packet on the surface of an infinitely deep, viscous fluid is developed. The case, in which the inverse Reynolds number is of the order of the wave steepness squared is analyzed. The expressions for fluid particle trajectories are determined, accurate to the third power of the steepness. The conditions, under which the packet envelope evolution is described by the nonlinear Schrödinger equation with a dissipative term linear in the amplitude, are determined. The rule, in accordance with which the term of this type can be correctly added in the evolutionary equation of an arbitrary order is formulated.  相似文献   

19.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号