首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system put in contact with a large heat bath normally thermalizes. This means that the state of the system ρ(t) approaches an equilibrium state ρeq, the latter depending only on macroscopic characteristics of the bath (e.g. temperature), but not on the initial state of the system. The above statement is the cornerstone of the equilibrium statistical mechanics; its validity and its domain of applicability are central questions in the studies of the foundations of statistical mechanics. In the present contribution we discuss the recently proven general theorems about thermalization and demonstrate how they work in exactly solvable models. In particular, we review a necessary condition for the system initial state independence (ISI) of ρeq, which was proven in our previous work, and apply it for two exactly solvable models, the XX spin chain and a central spin model with a special interaction with the environment. In the latter case we are able to prove the absence of the system ISI. Also the Eigenstate Thermalization Hypothesis is discussed. It is pointed out that although it is supposed to be generically true in essentially not-integrable (chaotic) quantum systems, it is how-ever also valid in the integrable XX model.  相似文献   

2.
A model for verifying and developing the fundamental ideas underlying the ergodic hypothesis is proposed. The model describes the dynamics of the spin subsystem formed by impurity charges with spin I and a small g factor in a crystal immersed in a strong constant external magnetic field under conditions where the spin system of the nuclei in the crystal is isolated from the other degrees of freedom. The additive integral of motion is the projection of the total spin of the subsystem onto the external field. Attention is focused mainly on the case of I=1/2. It is shown that the ergodic hypothesis holds if the correlation radius is finite in the initial state and that the ergodic hypothesis is violated if the initial state is sharply localized or has global correlation. The nonergodicity of the 8Li− 6Li spin subsystem, which is a convenient object for experimental investigations of spin dynamics, is revealed. An estimate is obtained for the time for transition from a sharply localized disturbance of the canonical distribution to a quasiequilibrium state. Zh. éksp. Teor. Fiz. 116, 1398–1418 (October 1999)  相似文献   

3.
Ground states of three-dimensional Ising spin glasses are calculated for sizes up to 143 using a combination of a genetic algorithm and cluster-exact approximation. For each realization several independent ground states are obtained. Then, by applying ballistic search and T=0Monte-Carlo simulations, it is ensured that each ground state appears with the same probability. Consequently, the results represent the true T=0 thermodynamic behavior. The distribution P(|q|) of overlaps is evaluated. For increasing size the width of P(|q|) and the fraction of the distribution below converge to zero. This indicates that for the infinite system P(|q|) is a delta function, in contrast to previous results. Thus, the ground-state behavior is dominated by few large clusters of similar ground states. Received 17 June 1999  相似文献   

4.
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with δ-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Many interesting features appear in the system. For example, the wave function has the SU(2|2) supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.  相似文献   

5.
N. UryÛ 《Phase Transitions》2013,86(1-4):133-175
Abstract

Following the Bogoliubov variational principle, the equilibrium and stability equations of the free energy for the two sublattice antiferromagnetic system with inter- and intrasublattice exchange interactions and with an external magnetic field are investigated. For the Ising spin system with uniaxial anisotropy, the phase diagrams have been calculated for various values of anisotropy constant d and the ratio of intra- to intersublattice interaction constants γ. It is shown that first-order, as well as second-order transitions, occur for γ > 0, whereas only a second-order transition occurs for γ ≦ 0, irrespective of the sign of d. Furthermore, similar calculations are extended for the anisotropic Heisenberg spin system and quite interesting phase diagrams have been obtained. Next, the effects of the anisotropic exchange interactions on the magnetic ordered states and the magnetizations of the singlet ground state system of spin one and with a uniaxial anisotropy term are investigated in the vicinity of the level crossing field H ? D/gμ B . A field-induced ordered state without the transverse component of magnetization is shown to appear in a certain range of magnetic field as the spin dimensionality decreases. It has also turned out that the phase transition between this ordered state and the canted antiferromagnetic state ordinarily found for the isotropic singlet ground state system is of first order. Lastly, the stable spin configurations at a temperature of absolute zero for a two-sublattice uniaxial antiferromagnet under an external magnetic field of arbitrary direction are studied. In particular, the effects of a single ionic anisotropy D-term and anisotropy in the exchange interactions on the magnetic phases are investigated. The antiferromagnetic state has turned out to appear only for the external magnetic field along the easy axis of sublattice magnetization, and makes a first-order phase transition to the canted-spin state or the ferromagnetic state. For other field directions, no antiferromagnetic state appears and only a second-order phase transition between the canted-spin and the ferromagnetic states occurs. The critical field as a function of external field direction has been calculated for several D-values.  相似文献   

6.
本实验选用ZLI-3654型铁电液晶(FLC)以及SE-3140型取向剂制备FLC器件样品,通过改变FLC相变过程中的降温速率以及相变前的热力学平衡态来研究FLC相变前的热力学平衡态对FLC排列的影响,共进行了十组实验.实验后,将FLC器件静态对比度进行比较,得出手性向列相到近晶A相(N*-SmA)相变前的热力学平衡态对FLC实现均匀排列起着极其重要的作用的结论.实验结果表明:器件的静态对比度可高达620 ∶1, N*-SmA相变前的热力学平衡态有利于形成高对比 关键词: 铁电液晶 降温速率 热力学平衡态 高对比度  相似文献   

7.
We compare results obtained in potential-model testing for the3S bound state of the deuteron by some scattering approximations which are not familiar in literature. The test concerns: the plane-wave approximation used in the continuous-energy spectrum within the framework of the Gelfand-Levitan formalism, the Brysk approximation modified byMichalík (Czech. J. Phys.B 17 (1967), 757;B 18 (1968), 517) and the Jost method modified bySasakawa (Prog. Theoret. Phys. Suppl. No. 27 (1963), 1). It is pointed out which of these approximations can be preferred in similar model calculations, where the wave-function approach is demanded. In particular cases we also give contributions for the first-order energy shift due to a weak Yukawa perturbation on the deuteron, if its bound state is described by the mentioned approximative wave functions.  相似文献   

8.
We describe a low-temperature thermodynamic model for dynamic nuclear polarization (DNP) via continuous-wave partial saturation of electron spin resonance (ESR) lines that are both homogeneously and inhomogeneously broadened. It is a variant of a reasoning proposed by Borghini, which in turn used Redfield’s thermodynamic treatment of saturation. Our variant is furthermore based on Provotorov’s insight that under partial saturation of a coupled-spin system two distinct spin temperatures should appear in a thermodynamical theory. We apply our model to DNP results obtained at a temperature of 1.2?K and in magnetic fields of 3.35 and 5?T on 1-13C labeled sodium acetate dissolved in a frozen D2O/ethanol-d6 solution doped with the free radical TEMPO.  相似文献   

9.
A system described by the Dicke Hamiltonian is considered. It is known that for the canonical density operator describing such a system, the internal energyU is strictly negative. On the other hand, the microcanonical density operator can be defined for an arbitrary value ofU. The thermodynamic limit for the microcanonical density operator is investigated. In the caseU<0 the obtained results are completely equivalent to those of the canonical density operator. However, in the caseU>0 it turns out that the photon density is non-zero, and that the entropy and the mean spin are independent ofU. Moreover, forU>0 the coupling constant of the Hamiltonian does not appear in any thermodynamic formula after the thermodynamic limit is performed.  相似文献   

10.
In the replica symmetric approximation and static limit in Matsubara “imaginary time”, the quantum XY spin glass model with planar Dzyaloshinskii-Moriya interaction in longitudinal field is investigated. Several thermodynamic quantities are calculated numerically as well as spin self-interaction and spin glass order parameter for spin S=1/2. It is shown that the entropy is not independent of the field. A crossover behavior of the specific heat depending on temperature is found. There is a deviation from the parabolic approximation, C/T=A+Bh 2 . Received 11 March 1998  相似文献   

11.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

12.
We study the spin–orbit coupling in the whole Brillouin zone for GaAs using both the sp3s*d5 and sp3s* nearest-neighbor tight-binding models. In the Γ-valley, the spin splitting obtained is in good agreement with experimental data. We then further explicitly present the coefficients of the spin splitting in GaAs L- and X-valleys. These results are important to the realization of spintronic device and the investigation of spin dynamics far away from equilibrium.  相似文献   

13.
黄多辉  王藩侯  程晓洪  万明杰  蒋刚 《物理学报》2011,60(12):123101-123101
对Ge原子采用6-311++G**基函数,Te和Se原子采用SDB-cc-pVTZ基函数,利用密度泛函理论的局域自旋密度近似方法优化得到了GeTe和GeSe分子的稳定构型,并计算了外电场作用下GeTe和GeSe基态分子的平衡核间距、总能量、最高已占据分子轨道能量EH、最低未占分子轨道能量EL、能隙、谐振频率和红外谱强度. 在上述计算的基础上利用单激发组态相互作用-局域自旋密度近似方法研究了GeTe和GeSe分子在外电场下的激发特性. 结果表明:随着正向电场强度的增大,分子核间距逐渐增大,分子总能量逐渐降低,谐振频率逐渐减小,红外谱强度则逐渐增大. 在0-2.0569×1010 V·m-1的电场范围内,GeTe分子的EH 均高于GeSe分子的EH;随着正向电场的增大,GeTe与GeSe的EH差逐渐变大,GeTe的EL低于GeSe的EL,它们的EL均随正向电场的增大而增大. 无外场时,GeTe分子的能隙比GeSe分子的能隙要小;在外电场反向增大的过程中, GeTe和GeSe的分子能隙始终减小. 外电场的大小和方向对GeTe和GeSe分子的激发能、振子强度及跃迁的波长均有较大影响. 关键词: GeTe GeSe 外电场 激发态  相似文献   

14.
The current voltage characteristics ofo-tolidine-iodine, with stoichiometry 1:1 grown from benzene, have been studied under high pressures upto 6 GPa atT=300 K andT=77 K. The characteristics show a pronounced deviation from ohmicity beyond a certain current for all pressures studied. At room temperature, beyond a threshold field the system switches from a low conductingOFF state to a high conductingON state with σONOFF ∼ 103. TheOFF state can be restored by the application of an a.c. pulse of low frequency. The temperature dependence of the two states studied indicates that theOFF state is semiconducting while theON state, beyond a certain applied pressure is metallic. The characteristics atT=77 K do not show any switching.  相似文献   

15.
A new thermodynamic model is proposed in order to account for the high spin low spin conversion in metal-organic polymers. The model, based on the idea that the spin conversion occurs in interacting domains of like-spin metal ions, allows to explain most of the important features of various types of spin conversion. The sine qua non condition of the existence of spin transitions with hysteresis is obtained. In the case of very large cooperativity, the model predicts unusual behaviour of the spin conversion system due to a low-temperature metastable high spin state. Existence of such a state is interesting in the context of the light induced excited spin state trapping recently observed in some ferrous compounds. The model is applied to interpret the spin transition in polycrystalline ferrous polymer [Fe 1-y Cu y (Htrz)2 trz] (BF 4) with y = 0.00, 0.01 and 0.10, detected by differential scanning calorimetry, optical reflectivity and electron paramagnetic resonance. The domain size and the interaction energy between the domains are estimated as, respectively, n = 11 and for the y = 0 compound. As the copper content is growing, n and tend to decrease, resulting in transformations of the shape of hysteresis loop which becomes less steep, narrows and shifts to lower temperatures. The electron paramagnetic resonance gives further evidence of the presence of like-spin domains. Received 27 November 1998 and Received in final form 19 April 1999  相似文献   

16.
A quantum spin system is discussed where a heat flow between infinite reservoirs takes place in a finite region. A time-dependent force may also be acting. Our analysis is based on a simple technical assumption concerning the time evolution of infinite quantum spin systems. This assumption, physically natural but currently proved for few specific systems only, says that quantum information diffuses in space-time in such a way that the time integral of the commutator of local observables converges: 0 dt [B, t A]<. In this setup one can define a natural nonequilibrium state. In the time-independent case, this nonequilibrium state retains some of the analyticity which characterizes KMS equilibrium states. A linear response formula is also obtained which remains true far from equilibrium. The formalism presented here does not cover situations where (for time-independent forces) the time-translation invariance and uniqueness of the natural nonequilibrium state are broken.  相似文献   

17.
The hyperfine structure of the ground state of vanadium, 51VI, is calculated in the nonrelativistic framework of the multi-configuration Hartree-Fock approximation. A configuration state function limiting algorithm is used to make the calculations feasible and to study the influence of core, valence and core-valence correlations in detail. The obtained configuration state function space captures the most important orbital correlations within 2%. Further correlations are included through configuration interaction calculation. The atomic state functions are used to evaluate the magnetic dipole hyperfine factor A and the electric quadrupole factor B. It turns out that the ab initio calculation can not capture the core polarization of the 2s shell. It introduces an error that is higher than the Hartree-Fock approximation. However, the detailed correlations being observed suggest the introduction of a wrong correlation orbital due to the algorithm being used. Neglecting this orbital leads to good agreement with 2% deviation from the experimental values for the A factors.  相似文献   

18.
贾婷婷  高涛  张云光  雷强华  罗德礼 《中国物理 B》2011,20(11):113601-113601
The equilibrium structures and the electronic, spectroscopic and thermodynamic properties of small Pun (n=2-5) molecules are systematically investigated using the methods of general gradient approximation (GGA) of density functional theory (DFT). The results show that the bond length of the lowest-energy structure of Pu2 is 2.578 AA. The ground state structure of Pu3 is a triangle with D3h symmetry, whereas for Pu4, the ground state structure is a square (D4h) and the spin polarization of 16 for molecule Pu5 with square geometry (D4h) is the most stable structure. For the ground state structures, the vibrational spectra as well as thermodynamic parameters are worked out. In addition, the values for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) along with the energy gap of all the Pu2-5 structures are presented. The relevant structural and chemical stabilities are predicted.  相似文献   

19.
Thermodynamic quantities and correlation functions (CFs) of the classical antiferromagnet on the checkerboard lattice are studied for the exactly solvable infinite-component spin-vector model, D↦∞. In contrast to conventional two-dimensional magnets with continuous symmetry showing extended short-range order at distances smaller than the correlation length, r ξ c∝ exp(T */T), correlations in the checkerboard-lattice model decay already at the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic number of strongly fluctuating local degrees of freedom. At low temperatures, spin CFs decay as < >∝ 1/r 2 in the range a 0r≪ξ cT -1/2, where a0 is the lattice spacing. Analytical results for the principal thermodynamic quantities in our model are very similar with MC simulations, exact and analytical results for the classical Heisenberg model (D = 3) on the pyrochlore lattice. This shows that the ground state of the infinite-component spin vector model on the checkerboard lattice is a classical spin liquid. Received 16 November 2001 and Received in final form 12 February 2002  相似文献   

20.
We prove that, for spin systems with a continuous symmetry group on lattices of arbitrary dimension, the surface tension vanishes at all temperatures. For the classicalXY model in zero magnetic field, this result is shown to imply absence of interfaces in the thermodynamic limit, at arbitrary temperature. We show that, at values of the temperature at which the free energy of that model is continuously differentiable, i.e. at all except possibly countably many temperatures, there iseither aunique translation-invariant equilibrium state, or all such states are labelled by the elements of the symmetry group, SO(2). Moreover, there areno non-translation-invariant, but periodic equilibrium states. We also reconsider the representation of theXY model as a gas of spin waves and vortices and discuss the possibility that, in four or more dimensions, translation invariance may be broken by imposing boundary conditions which force an (open) vortex sheet through the system. Among our main tools are new correlation inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号