首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李财富  张水燕  王君  冯绪胜  孙德军  徐健 《化学学报》2008,66(21):2313-2320
通过表面张力、Zeta电位和流变学参数的测定, 研究了聚氧乙烯烷基醚类非离子型表面活性剂(Brij 30和Brij 35)在合成锂皂石(Laponite)纳米颗粒表面的吸附及对Laponite水分散体系中颗粒间相互作用和体系粘度的影响. 结果表明, 这类表面活性剂能显著地吸附在Laponite颗粒表面上, 且吸附量随其分子中POE链长短而不同. 这种吸附没有改变Laponite粒子的带电性质, 但一定程度地降低了Laponite颗粒Zeta电位; 吸附也会减弱颗粒间的相互作用, 降低体系的粘度. 实验以Laponite和Brij为乳化剂, 制备了O/W型乳状液. 乳液稳定性变化和乳液粒径分布结果表明, 体系中Brij的浓度较低时, 乳液的性质主要是由Laponite颗粒决定的; 而Brij浓度较高时, 则主要取决于Brij表面活性剂. 高速剪切含Brij的Laponite水分散体系, 剪切后表面张力随时间的变化表明, 剪切作用会使得吸附在Laponite颗粒表面的Brij分子不同程度地解吸下来. 这也意味着乳液制备时, 高速剪切作用也会造成Brij分子自Laponite颗粒表面的脱附, 这可能是非离子表面活性剂与阳离子表面活性剂对负电固体颗粒稳定乳液影响不同的原因.  相似文献   

2.
We have investigated self-organization of polymers with surfactants through solvent shifting process resulting in formation of stable and uniform nanoparticles. We studied polymeric nanoparticles made of poly(methylmethacrylate) and of polystyrene dispersed in water. The dispersion was prepared by a fast mixing of a solution of the polymers with a solution of several ionic and nonionic surfactants in pure water. We observed the formation of well defined nanoparticles by light scattering, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (Cryo-TEM) methods. The study shows how nanoparticle properties are changed by the chemical composition of surfactants, molar mass of polymers, concentrations of both components and finally, by variations in method of nanoparticles preparation. Dynamic light scattering (DLS) and static light scattering (SLS) provide the hydrodynamic radii and radii of gyration for selected types of nanoparticles. Cryo-TEM experiments prove that the nanoparticles have good spherical shape. Analysis of SANS data and Cryo-TEM micrographs suggest that the prepared particles are composed of polymer and surfactant that are evenly distributed.  相似文献   

3.
The properties of aqueous foams stabilized by a mixture of negatively charged silica nanoparticles and hexadecyltrimethylammonium bromide were studied in this work. Rheological properties of the foams were studied. The interaction between nanoparticles and surfactant molecules in the bulk phase was studied by zeta potential and size measurements of the particles. The interaction at the interface was studied by means of interfacial shear rheology, surface pressure measurement, and atomic force microscopy. It was found that foams were more stable at low surfactant concentrations, though the foamability was low. This was due to the formation of a strong viscoelastic film of surfactant-laden particles at the air–water interface. A suitable mechanism has been proposed to explain the stability of foams in the presence of nanoparticles at different surfactant concentrations.  相似文献   

4.
The aim of this study is to determine the effects of oil solutes and alcohol cosolvents on the structure of oil-in-water microemulsions stabilized by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The systems investigated involved the solubilization of 1,3,5-trimethylbenzene or 1,2-dichlorobenzene by P123 (EO(20)-PO(70)-EO(20)) pluronic surfactant micelles in water and water + ethanol solvents. The structures of these swollen micelles were determined by small-angle neutron scattering (SANS). A thermodynamic model was employed to interpret the characterization data. The results of the thermodynamic model for micellization agreed well with the SANS data from samples of micelles swollen by both oils. The model predicted the size of the micelles within 5% accuracy using only one fitting parameter, the micelle polydispersity. Ethanol had significantly different effects on the polymer micelles that contained solubilized oil compared to pure polymer micelles. For pure polymer micelles, the addition of ethanol increased the solubility of the polymer and, therefore, decreased the total volume fraction of micelles, while for polymer-oil aggregates, ethanol tended to have a positive effect on the volume fraction of micelles. SANS results showed that the greatest divergence from pure aqueous solvent results occurred at oil concentrations above the microemulsion stability limit.  相似文献   

5.
The interaction between organic molecules and the surface of nanoparticles (NPs) strongly affects the size, properties and applications of surface-modified metal sulfide semiconductor nanocrystals. From this viewpoint, we compared the influence of cationic surfactants with various chain lengths and anionic surfactants with different head groups, as surface modifiers during synthesis of ZnS NPs in aqueous medium. The surfactant adsorbs on the surface of the particles as micelle-like aggregates. These aggregates can form even at the concentration lower than critical micelle concentration (cmc) due to interaction between the polar groups and the NPs. The nature of interaction depends specifically on the surfactant polar group. The ability of surfactant to form the micelle-like aggregates on the surface of the NPs correlates with their cmc. This leads to the fact that the surfactant with longer tail stabilizes the NPs better since its cmc is lower. The adsorption of the surfactant on the NPs also stabilizes them by the change of their charge which is in accordance with the correlation of zeta potential with the particles stability. The energetics of surface states generating interesting photoluminescence (PL) properties in ZnS NPs has been governed by the nature of surfactant molecules. In general, the size, structure, and stability of the ZnS NPs can be controlled by the choice of suitable surfactant.  相似文献   

6.
The zeta potentials and dispersion properties of precipitated calcium carbonate suspensions adsorbed with alkyl polyglycosides in aqueous medium were investigated. Within the investigated pH ranges, the adsorption curves of alkyl polyglycosides on calcium carbonates show sigmoidal shapes, and the zeta potential decreases as the amount of adsorption increases. At positively charged surfaces of low pH, the adsorption amounts were greater than those at negatively charged surfaces, indicating that alkyl polyglycosides were negatively charged in aqueous solutions. At low concentrations of alkyl polyglycosides, the dispersion stabilities of suspensions were very poor and showed no linearity with zeta potentials over the entire range of pHs, which may be attributed to the onset of hydrophobic interaction between particles due to the adsorption of surfactant molecules. This destabilization continued until monolayer coverage by the surfactant layer was complete. Based on the classical DLVO theory, there may be a strong hydrophobic interaction between particles. Beyond monolayer adsorption, the dispersion stability increases, probably by the formation of hemimicelle or admicelle. Therefore, it is believed that ionization of alkyl polyglycosides and admicelles of surfactants on particle surface plays a key role in the stability of dispersions and the abrupt increase in adsorption. Copyright 2000 Academic Press.  相似文献   

7.
《Analytical letters》2012,45(4):719-734
Abstract

Ionic surfactants and near-infrared laser dyes formed complexes which were extracted into organic solvents as ion pairs. Surfactants were determined spectrophotometrically by measuring the near-infrared absorbance and fluorescence of the ion pair in the organic solvent. Several of the commercially available near infrared dyes have been found suitable for surfactant determination in water using this technique. The excess near-infrared dye coextracted into the organic solvent was determined by blank extractions. The calibration curves were linear within two orders of magnitude of surfactant concentrations. Non-linear calibration curves are obtained for wider concentration range of surfactants. This method using the recently developed near-infrared laser diode intracavity technique was applied to the determination of SDS in water. Lower detection limits and ease of operation are the major advantages of using this new laser diode technique. The extraction efficiency of different solvent systems was evaluated.  相似文献   

8.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

9.
Pickering emulsions are surfactant‐free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant‐stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution.  相似文献   

10.
The extent of aggregation of nonionic surfactants can be controlled by the composition of mixed solvents with two miscible glycols, ethylene glycol (EG)/propylene glycol (PG). Three nonionic surfactants bearing a common E8 ethoxylated headgroup, but with variations in the hydrocarbon chain, have been investigated: octaethylene monododecyl ether (C12E8), octaethylene monotetradecyl ether (C14E8), and octaethylene monohexadecyl ether (C16E8). The hydrogen-bonding solvents were EG/PG mixtures at different PG levels, defined in terms of the concentration (mol %) of PG. Aggregation was investigated using small-angle neutron scattering (SANS) with h-CiE8 surfactants, at 10 and 5 wt %, in deuterated glycol solvents to improve contrast. Increasing PG concentration (mol %) in the background EG/PG solvent leads to a consistent decrease in the SANS intensity, until in pure d-PG only very weak scattering is observed. These SANS data were analyzed using cylinder or ellipsoidal form factors for the EG-rich and PG-rich systems, respectively, hence demonstrating an aggregate shape change as a function of solvent composition. The results show that aggregation of nonionic surfactants occurs in glycol solvents and that the EG:PG ratio may be used as an effective means to switch aggregation "on" or "off", as required.  相似文献   

11.
12.
Abstract

This study investigated the effect of cationic, anionic (saturated and unsaturated), and nonionic surfactants on the formation, morphology, and surface properties of silica nanoparticles synthesized by the ammonium‐catalyzed hydrolysis of tetraethoxysilane in alcoholic media. Results indicate that at a relatively low surfactant concentration (1 × 10?3–1 × 10?6 M), cationic surfactants significantly affected the growth of silica particles as measured by dynamic light scattering and transmission electron microscopic analyses. In contrast, the anionic and nonionic surfactants showed relatively minor effects in the low concentration range. The magnitude of negative zeta potential was reduced for silica colloids that were synthesized in the presence of cationic surfactant because of charge neutralization. The presence of anionic surfactants only slightly increased the negative zeta potential while the nonionic surfactant showed no obvious effects. At high surfactant concentrations (>1 × 10?3 M), cationic and anionic surfactants both induced colloid aggregation, while the nonionic surfactant showed no effect on particle size. Raman spectroscopic analysis suggests that molecules of cationic surfactants adsorb on silica surfaces via head groups, aided by favorable electrostatic attraction, while molecules of anionic and nonionic surfactants adsorb via their hydrophobic tails.  相似文献   

13.
An easy method of measurement of the zeta potentials of sub-50-nm polymeric nanoparticles is suggested. Although zeta potential measurements of nanoparticles or emulsions above 50 nm have been successfully carried out, zeta potentials of emulsions or nanoparticles below 50 nm could not be precisely measured in the region of extremely low conductivity by conventional electrophoresis with a He-Ne laser. However, zeta potentials of sub-50-nm nanoparticles were measured in the region of thin electrical double layers by addition of sodium chloride and zeta potentials in the condition without sodium chloride could be predicted by extrapolation of the measured potentials. The electrophoretic mobility of 150-nm nanoparticles stabilized with sodium dodecylsulfate was the same as that calculated from extrapolation of the measured ones. The zeta potentials of sub-50-nm nanoparticles stabilized with sodium dodecylsulfate could be calculated by the same procedure.  相似文献   

14.
Aggregation in mixed water-glycol and pure glycol solvents has been investigated with four related surfactants, bearing common C12 tails: anionic, sodium dodecylsulfate (SDS); cationic, dodecyltrimethylammonium bromide (C12TAB); zwitterionic C12-amidopropyldimethylamine betaine (betaine) and nonionic, octaethyleneglycol monododecyl ether (C12E8). The solvent media were water, water/ethylene glycol, and water/propylene glycol mixtures, as well as pure ethylene glycol (EG) and propylene glycol (PG), spanning relative dielectrics epsilon(r) from 79 to 30. Results from small-angle neutron scattering (SANS) experiments, employing deuterated solvents, were consistent with the presence of ellipsoidal, or cylindrical micelles, depending on solvent and surfactant type. In pure EG and PG solvents the ionic and zwitterionic surfactants exhibit only weak aggregation, with much smaller micelles than normally found in water. However, interestingly, pure EG is identified as a solvent in which nonionic C12E8 aggregates strongly, mirroring the behavior in water. In contrast when the solvent is changed to PG (epsilonr=30) aggregation of C12E8 is only minimal. Hence, aggregation is shown to be strongly dependent on surfactant type and identity of the glycol solvent.  相似文献   

15.
A kinetic study was carried out to monitor the time-dependent formation of surfactant-stabilized polymeric nanoparticles prepared by controlled phase separation. The nanoparticles were made of poly(methylmethacrylate) or polystyrene and several ionic and nonionic surfactants. The dispersion was prepared by fast mixing a solution of the polymers in organic solvents with a solution of a surfactant in water. We observed the formation of well-defined nanoparticles measured by time-resolved small-angle x-ray scattering (TR-SAXS). Our results suggest that the kinetics for the formation of nanoparticles comprising ionic surfactants is much faster (in the range of milliseconds) than that for nanoparticles comprising nonionic surfactants (on the time scales of several seconds). We were able to observe the transformation of particle surface from transient structure to hard sphere one in real time. Some systems manifest a plethora of structural changes that demands further experimental research.  相似文献   

16.
Stabilization of emulsions with solid particles can be used in several fields of oil and gas industry because of their higher stability. Solid particles should be amphiphilic to be able to make Pickering emulsions. This goal is achieved by using surfactants at low concentrations. Oil-in-water (o/w) emulsions are usually stabilized by surfactant but show poor thermal stability. This problem limits their applications at high-temperature conditions. In this study, a novel formulation for o/w stabilized emulsion by using silica nanoparticles and the nonionic surfactant is investigated for the formulation of thermally stable Pickering emulsion. The experiments performed on this Pickering emulsion formula showed higher thermal stability than conventional emulsions. The optimum wettability was found for DME surfactant and silica nanoparticles, consequently, in that region; Pickering emulsion showed the highest stability. Rheological changes were evaluated versus variation in surfactant concentration, silica concentration and pH. Scanning electron microscopy images approved the existence of a rigid layer of nanoparticle at the oil-water interface. Finally, the results show this type of emulsion remains stable in harsh conditions and allows the system to reach its optimum rheology without adding any further additives.  相似文献   

17.
The object of this research is to discover substitutes for halogenated solvents In detergent formulations. Recent work in our Laboratories indicates that the study of surfactant enhanced solvent blends may be very rewarding in this regard. In particular, N.N-dialkylamides and N-alkylpyrrolidinones, although they are not as effective as chlorinated solvents, can be more easily blended with water and common surfactants to produce very effective solvent and reaction systems for toxic oils and inorganics. These solvents are biodegradable and not extremely toxic. We have initiated a study of the appropriate physical properties of these blends in order to determine their efficacy as media for the dissolution and degradation of model compounds.  相似文献   

18.
The self-assembling structures and dynamics of surfactants determine most of their macroscopic physicochemical properties and performances. Herein, we review recent work on the self-assembly of surfactants by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in conjunction with cryogenic transmission electron microscopy (Cryo-TEM) from the perspective of researchers having only limited theoretical knowledge of these techniques but expert in surfactants. Emphasis is placed on the structural analysis of typical surfactant aggregates over a wide range of size scales from nanometers up to microns, including spherical and rod-like micelles, wormlike micelles, vesicles, liquid crystals and coacervates, by combining different numerical approaches to the treatment of small-angle scattering data with the direct Cryo-TEM imaging method. Furthermore, the complementarity between SAXS and SANS, and between the scattering techniques and Cryo-TEM, that is, specific contributions of these techniques, is also covered.  相似文献   

19.
Block ionomer complexes (BICs) are prepared from anionic block copolymers and cationic surfactants of different structure or from their mixtures. Drastic changes in the morphology and stability of BIC nanoparticles caused by changes in the composition of the surfactant mixture are demonstrated. Single-tail and double-tail surfactants appear to mix within the BIC, resulting in the formation of rather uniform BIC particles. Morphologies of the particles of these mixed BICs are intermediate between those prepared from pure single- and double-tail surfactants. Particles of BIC prepared from mixtures of single- and triple-tail surfactants are heterogeneous, and FRET experiments indicate that surfactant components in these systems are strongly segregated. The results of this study provide important insights into the formation and structure of the BIC and have implications for various applications of the BIC (e.g., nanomedicine), in which precise control of the shape, size, and other properties is needed.  相似文献   

20.
短碳链醇/水混合溶剂中表面活性剂的表面性质   总被引:2,自引:0,他引:2  
李勇慧  黄建滨  王传忠  杨榕  李润锴 《化学学报》2001,59(12):2152-2157
对不同类型表面活性剂(阳离子型、阴离子型、非离子型、正负混合型)在短碳链醇/水混合溶剂中的表面物化性质进行了较为系统的研究,探讨了短碳链醇加入对体系Υcmc值和cmc值的影响。发现各类体系的Υcmc随短碳链醇加入的变化规律并非决定于表面活性剂类型而取决于该表面活性剂在水溶液中的饱和吸附量和Υcmc值的大小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号