首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
碳炔是碳的同素异形体,利用聚偏氯乙烯和乙醇钠的均相脱HCl反应制备碳炔,并用原位红外测量装置研究了碳炔的热稳定性.结果表明,碳炔在室温下比较稳定,随温度升高稳定性快速降低,高于220C后碳炔结构已基本消失.  相似文献   

2.
黄萍  张丽莉  卢嘉春 《光谱实验室》2006,23(6):1191-1193
用碱脱去聚卤代烯烃中的卤化氢是制备碳炔较为经济简单的方法.本工作分别以聚氯乙烯、聚偏氯乙烯(共聚体)、聚偏氯乙烯(均聚体)为原料,用氢氧化钾脱氯化氢制备碳炔,并利用红外光谱研究各产物中碳炔结构的变化规律,探讨碳炔制备的影响因素,总结得出均聚偏氯乙烯更适合用作制备碳炔的原料.  相似文献   

3.
碳炔分子红外振动光谱的理论模拟研究   总被引:1,自引:1,他引:0  
卢嘉春 《光谱实验室》2003,20(5):639-642
碳炔分子具有不同的结构,相应的红外谱图具有不同的振动吸收峰位。本文以GAUSSIAN98计算程序在HF水平选用6—31 G(d,p)基组对两种不同结构碳炔的红外光谱进行理论模拟计算。结果表明两种不同结构的碳炔分子的红外振动吸收峰位存在差异,不同共轭碳链长度影响红外吸收峰的峰位和峰强度。计算结果可应用于碳炔材料红外谱图的谱峰归属和分析。  相似文献   

4.
谱峰相对强度比法在碳炔含量测定中应用   总被引:1,自引:1,他引:0  
碳炔材料是一种不溶不熔高聚物 ,红外谱图是最简易的一种分析测试工具。将 C—H键的振动峰面积与 C C键的振动峰面积相关联 ,用谱峰相对强度比法测定不同制备条件下产生的碳炔材料的相对含量。结果表明 ,两者比值对反应物浓度的变化具有相关性 ,可用作碳炔材料制备中实验条件的优选手段。  相似文献   

5.
报道了HL-1M装置1998年度物理实验的进展情况。主要包括等离子体密度极限,中性束注入加热,离子回旋共振加热,低温杂波离子加热,多发弹丸注入,超声分子束注入等实验的情况。  相似文献   

6.
HL—1M装置的密度极限研究   总被引:1,自引:1,他引:0  
描述了HL-1M 装置欧姆加热状态下的密度极限,该密度极限是放电破裂前的最高密度值。通过比较氘、氢放电,硅化前后的放电,超声分子束注入、冰弹丸注入和脉冲送气放电,发现HL-1M装置的壁条件、加料方式以及氢同位素对HL-1M 装置的密度极限影响很大。产生密度极限破裂的原因主要是等离子体约束变差,总体辐射损失与欧姆加热功率平衡被破坏  相似文献   

7.
HL—1准光学ECRH传输系统的设计与大功率测量   总被引:1,自引:1,他引:0  
HL-1托卡马克准光学电子回旋共振加热传输系统包括φ80波导,椭球反-射镜,Ta-per,准光学弯光,托卡马克顶部注入和水平注入的微波通道,窗口等,利用这套系统,可以作从水平方向注入的O模加热实验,也可以作从顶部注入的O模或X模加热实验,这套系统可传输的能量超过1MW,大功率测量表明,这磋系统可以将回旋管输出的线偏振高斯束保持其线偏振特性不变地注入托卡马克等离子体,整个系统的传输效率达到90%。  相似文献   

8.
在HL-1M装置上利用马赫/郎缪尔探针分别在欧姆放电,低杂波注入,中性束注入,离子回旋加热和电子回旋加热等情况下测量下刮离层和等离子体边缘的极向流速度和电场,得到了它们的径向分布,研究了LHW,NBI,ICRH和ECRH对改善等离子体约束性能,边缘粒子的径向传输的影响。  相似文献   

9.
HL-1M装置中的离轴电子回旋加热实验   总被引:2,自引:2,他引:0  
在HL-1M装置上进行了离轴电子回旋加热实验。研究了电子温度的变化,等离子体密度对加热效果的影响,离轴加热条件下MHD锯齿的变化,波对m/nk=1/1模的影响及在与低杂波电流驱动共同作用下的各种实验现象。 这些现象被认为与高能电子和它们的分布有关。  相似文献   

10.
HL-1M装置离子回旋共振加热系统及初步实验   总被引:3,自引:2,他引:1  
新建成的HL-1M装置离于回旋共振加热(ICRH)射频系统,经工程联调,已达到输出功率500kW、脉宽100ms、频率26~36MHz。在环向场B  相似文献   

11.
Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate.  相似文献   

12.
An ab initio DFT study of atomic and electronic structure of carbyne crystals was carried out. The influence of hydrogen impurities on carbyne structure was investigated. Calculations with atomic relaxations showed that carbon chains in the carbyne crystal structure are bow-like curved; free-energy calculations showed that the most probable lengths of those chains are four and six atoms, which is in a good agreement with experiments. Carbyne-crystal electronic-structure analysis showed that there is a small gap of 0.09 eV near the Fermi level in four-atomic carbyne, while there is no such gap in six-atomic carbyne. In studying of the hydrogen impurity influence on the atomic and electronic structure of carbyne crystals, hydrogen atoms were embedded in two directions: across and along carbon chains in the crystal. As a result we found that the crystal structure is not distorted in the case of hydrogen embedded across the chains, while the type of bonding between carbon atoms in carbon chains in the carbyne crystal structure depended on the impurity concentration. The crystal structure was distorted when hydrogen was embedded along the chains. The concentration of impurities influences the conductivity of a carbyne crystal.  相似文献   

13.
Chao-Fan Lv 《中国物理 B》2022,31(12):128103-128103
Carbyne, as the truly one-dimensional carbon allotrope with sp-hybridization, has attracted significant interest in recent years, showing potential applications in next-generation molecular devices due to its ultimate one-atom thinness. Various excellent properties of carbyne have been predicted, however, free-standing carbyne sample is extremely unstable and the corresponding experimental researches and modifications are under-developed compared to other known carbon allotropes. The synthesis of carbyne has been slowly developed for the past decades. Recently, there have been several breakthroughs in in-situ synthesis and measurement of carbyne related materials, as well as the preparation of ultra-long carbon chains toward infinite carbyne. These progresses have aroused widespread discussion in the academic community. In this review, the latest approaches in the synthesis of sp carbon are summarized. We then discuss its extraordinary properties, including mechanical, electronic, magnetic, and optical properties, especially focusing on the regulations of these properties. Finally, we provide a perspective on the development of carbyne.  相似文献   

14.
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.  相似文献   

15.
Structural transformations of the cumulene form of amorphous carbyne which are induced by heating at high pressure (7.7 GPa) are investigated. These can be described by the sequence amorphous phase — crystal — amorphous phase — disordered graphite. Raman scattering shows that predominately the chain structure of carbyne remains at the first three stages. It was found that the intermediate crystalline phase is an unknown modification of carbon whose structure is identified as cubic (a=3.145 Å). A mechanism of structural transformations in carbyne that involves the formation of new covalent bonds between chains is discussed. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 237–242 (25 August 1997)  相似文献   

16.
The DC and AC conductivities and the magnetoresistance and thermopower of carbyne samples were studied over the temperature range 1.8–300 K at frequencies 10 MHz–1 GHz. It was established that a variation in the fraction of sp 2 bonds in carbynes induces a transition from one-to two-and then to three-dimensional conduction. The physical properties of the new carbyne-based solids may be understood within the model treating carbyne as a nanocluster material based on linear carbon chains and having a characteristic cluster size of 1 to 10 nm.  相似文献   

17.
The electronic structure of amorphous carbyne has been investigated by X-ray photoelectron spectroscopy and X-ray emission spectroscopy. Carbyne band structure has been calculated semiempirically and the experimental data have been interpreted on the basis of the calculation results. The valence band width was found to be about 20 eV which is the same as that in all other condensed carbon structures. The fine satellite structure near the 1s line of carbon has been studied. It is shown that the energy bands in carbyne are arranged in a mirror-like way relative to the Fermi level. The real carbyne structure is susceptible to conformations which affect primarily the π-subband structure.  相似文献   

18.
Yong-Zhe Guo 《中国物理 B》2022,31(12):128102-128102
Carbyne, the linear chain of carbon, promises the strongest and toughest material but possesses a Peierls instability (alternating single-bonds and triple-bonds) that reduces its strength and toughness. Herein, we computationally found that the gravimetric strength, strain-to-failure, and gravimetric toughness can be improved from 74 GPa·g-1·cm3, 18%, and 9.4 kJ·g-1 for pristine carbyne to the highest values of 106 GPa·g-1·cm3, 26%, and 19.0 kJ·g-1 for carbyne upon hole injection of +0.07 e/atom, indicating the charged carbyne with record-breaking mechanical performance. Based on the analyses of the atomic and electronic structures, the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.  相似文献   

19.
The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh–Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号